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We now write the vector u(t) as u(t) = Q(t)z for an arbitrary
vector x,

(I-Q)QMz = ST [-HI - QEQ(t)z+
(A() = NI = R)Q(t)x] .

The above equation yields an estimate of the norm of (I —Q)Q(¢),
which is the sine of the angle between the invariant subspaces
M = Ran(Q) and M (t) = Ran(Q(t)).

Proposition 3.5 Assume that X is a simple eigenvalue of A.
When the matriz A is perturbed by the matrix tE, then the sine
of the angle between the invariant subspaces M and M(t) of A
and A+ tE associated with the eigenvalues X\ and \(t) is approz-
imately,

sin (M, M (t)) ~ [t[[[ST(A (I — Q)EQ(1)]]
the approzimation being of second order with respect to t.

Thus, we can define the condition number for invariant subspaces
as being the (spectral) norm of ST(\).

The more interesting situation is when the invariant subspace
is associated with a multiple eigenvalue. What was just done
for one-dimensional invariant subspaces can be generalized to
multiple-dimensional invariant subspaces. The notion of condi-
tion numbers here will require some knowledge about generalized
solutions to Sylvester’s equations. A Sylvester equation is a ma-
trix equation of the form

AX - XR=B (3.46)

where Aisnxn, X and B are nxr and Ris rxr. The important
observation which we would like to exploit is that (3.46) is nothing
but a linear system of equations with n r unknowns. It can be
shown that the mapping X — AX — XR is invertible under the
simple condition that the spectra of A and R have no point in
common.
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We now proceed in a similar manner as for simple eigenvalues
and write,

AU = UR
(A+tE)U(t) = U{)R(?)

in which U and U(¢) are n X r unitary matrices and R and R(t)
are r X r upper triangular. Subtracting U(¢)R from the second
equation we obtain

AU(t) — U(O)R = —tEU(t) + U(t)(R(t) — R)

Multiplying both sides by I — () and using again the relation
(3.45),

(I = QAT - QU{) — (I - QU R
= (I = Q)[-tEU(t) + U(t)(R(t) — R)]

Observe that the operator
X—>IT-QAI-Q)X —-XR

is invertible because the eigenvalues of (I —Q)A(I — @) and those
of R form disjoint sets. Therefore, we can define its inverse which
we call ST()\), and we have

(I =QU(#) =ST(\) [t = Q)EU(t) + (I = QU()(R(t) — R)]

As a result, up to lower order terms, the sine of the angle be-
tween the two subspaces is [t|||ST(A\)(I —Q)EU(t)||, a result that
constitutes a direct generalization of the previous theorem.

4. Localization Theorems

In some situations one wishes to have a rough idea of where the
eigenvalues lie in the complex plane, by directly exploiting some
knowledge on the entries of the matrix A. We already know a
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simple localization result that uses any matrix norm, since we
have

Al < (A
i.e., any eigenvalue belongs to the disc centered at the origin and
of radius ||A]|. A more precise localization result is provided by
Gerschgorin’s theorem.

Theorem 3.11 (Gerschgorin [58]) Any eigenvalue X of a ma-
triz A is located in one of the closed discs of the complex plane
centered at a; and having the radius

j=n
> lag| -
j=1
JF#i

In other words,

j=n

VA € O'(A), d ¢ such that |)\ - aii| S Z |ai]'| . (347)
7j=1
i#i

Proof.  The proof is by contradiction. Assume that (3.47)
does not hold. Then there is an eigenvalue A such that for i =
1,2,...,n we have

j=n
|)\ — UJZ'Z'| > Z |Clij| . (348)
Jj=Lj#1
We can write A — A\ = D — A\ + H, where D = diag {a;;}
and H is the matrix obtained from A by replacing its diagonal
elements by zeros. Since D — A is invertible we have

A—- X =(D-X)I+(D—-MX)"H) . (3.49)

The elements in row i of the matrix C = (D — A\I) 'H are ¢;; =
a;;j/(ai; — A) for j # i and ¢; = 0, and so the sum of their moduli
are less than unity by (3.48). Hence

p((D = M) H) < (D = M) H| < 1
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and as a result the matrix I + C = (I 4+ (D — \I)"'H) is nonsin-
gular. Therefore, from (3.49) (A — AI) would also be nonsingular
which is a contradiction. [ ]

Since the result also holds for the transpose of A, we can for-
mulate a version of the theorem based on column sums instead of
row sums,

i=n
VA e O'(A), = ] such that |>\ - a]’j| < Z |a,~j| . (350)
oy
The discs defined in the theorem are called Gerschgorin discs.
There are n Gerschgorin discs and their union contains the spec-
trum of A. The above results can be especially useful when the
matrix is almost diagonal, as is often the case when an algorithm
is used to diagonalize a matrix and the process is nearing conver-
gence. However, in order to better exploit the theorem, we need
to show the following additional result.

Theorem 3.12 . Suppose that there are m Gerschgorin discs
whose union S is disjoint from all other discs. Then S contains
ezactly m eigenvalues, (counted with their multiplicities).

Proof. Let A(t) = D+ tH where 0 < ¢t < 1, and D, H are
defined in the proof of Gerschgorin’s theorem. Initially when ¢ = 0
all eigenvalues of A(t) are at the discs of radius 0, centered at
a;;. By a continuity argument, as ¢ increases to 1, the branches of
eigenvalues \;(t) will stay in their respective discs as long as these
discs stay disjoint. This is because the image of the connected
interval [0,1] by A;(¢) must be connected. More generally, if the
union of m of the discs are disjoint from the other discs, the
union S(t) of the corresponding discs as t varies, will contain m
eigenvalues. ]
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An important particular case is that when one disc is disjoint from
the others then it must contain exactly one eigenvalue.

There are other ways of estimating the error of a;; regarded as
an eigenvalue of A. For example, if we take as approximate eigen-
vector the i-th column of the identity matrix we get the following
result from a direct application of Kato-Temple’s theorem in the
Hermitian case.

Proposition 3.6 Let i be any integer between 1 and n and let
A be the eigenvalue of A closest to a;;, and p the next closest
eigenvalue to a;. Then if we call €; the 2-norm of the (n — 1)-
vector obtained from the i — th column of A by deleting the entry

a; we have
2

A —a;| <
| —a,,|

Proof. The proof is a direct application of Kato-Temple’s the-
orem. |

Thus, in the Hermitian case, the Gerschgorin bounds are not
tight in general since the error is of the order of the square of the
vector of the off-diagonal elements in a row (or column), whereas
Gerschgorin’s result will provide an error estimate of the same
order as the l-norm of the same vector (in the ideal situation
when the discs are disjoint). However, we note that the isolated
application of the above proposition in practice may not be too
useful since we may not have an estimate of | — ay;|. A simpler,
though less powerful, bound is |[A—a;;| < €;. These types of results
are quite different in nature from those of Gerschgorin’s theorem.
They simply tell us how accurate an approximation a diagonal
element can be when regarded as an approximate eigenvalue. It
is an isolated result and does not tell us anything on the other
eigenvalues. Gerschgorin’s result on the other hand is a global
result, in that it tells where all the eigenvalues are located, as a
group. This distinction between the two types of results, namely
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the (local) a-posteriori error bounds on the one hand, and the
global localizations results such as Gerschgorin’s theorem on the
other, is often misunderstood.

PROBLEMS

P-3.1 If P is a projector onto M along S then P is a projector onto
S+ along M+*. [Hint: see proof of Proposition 3.1].

P-3.2 Show that for two orthogonal bases V7, V5 of the same subspace
M of C™ we have ViViflz = VoV z Va.

P-3.3 What are the eigenvalues of a projector? What about its eigen-
vectors?

P-3.4 Let P beaprojector and V = [v1,v9, -+, vp,] a basis of Ran(P).
Why does there always exist a basis W = [wy,ws, -+, wy,] of L =
Ker(P)* such that the two sets form a biorthogonal basis? In general
given two subspaces M and S of the same dimension m, is there always
a biorthogonal pair V, W such that V is a basis of M and W a basis
of S7

P-3.5 Let P be a projector, V = [v1,v9, -, vn] a basis of Ran(P),
and U a matrix the columns of which form a basis of Ker(P). Show
that the system U,V forms a basis of C". What is the matrix repre-
sentation of P with respect to this basis?

P-3.6 Show that if two projectors P, and P, commute then their
product P = P; P is a projector. What are the range and kernel of
pP?

P-3.7 Consider the matrix seen in Example 3.6. We perturb the term
azz to —25.01. Give an estimate in the changes of the eigenvalues of
the matrix. Use any FORTRAN library or interactive tool to compute
the eigenvectors/ eigenvalues of the perturbed matrix.

P-3.8 Let

(X,Y)=  max  dist(u,Y).
z € Xjzll2=1
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Show that
w(Ml,MQ) = max{d(Ml,Mg),d(Mg,Ml)} .

P-3.9 Given two subspaces M and S with two orthogonal bases V'
and W show that the singular values of VEW are between zero and
one. The canonical angles between M and S are defined as the acutes
angles whose cosines are the singular values oy, i.e., cos §; = o;(VIW).
The angles are labeled in descending order. Show that this definition
does not depend on the order of the pair M,S (in other words that
the singular values of WV are identical with those of VZW).

P-3.10 Show that the largest canonical angle between two subspaces
(see previous problem) is /2 iff the intersection of M and the orthog-
onal of S is not reduced to {0}.

P-3.11 Let P, P, be two orthogonal projectors with ranges M; and
M respectively of the same dimension m < n/2 and let V;,i = 1,2
be an orthogonal basis of M;,i = 1,2. Assuming at first that the
the columns of the system [Vi, V5] are linearly independent what is
the matrix representation of the projector P, — Py with respect to the
basis obtained by completing Vi, V5 into a basis of C"? Deduce that
the eigenvalues of Py — P, are + sin 6;, where the 6;’s are the canonical
angles between M; and M, as defined in the previous problems. How
can one generalize this result to the case where the columns of [V7, V5]
are not linearly independent?

P-3.12 Use the previous result to show that
u)(]\417 MZ) = sin Opaq

where 0,4, is the largest canonical angle between the two subspaces.

P-3.13 Prove the second equality in equation (3.32) of the proof of
Theorem 3.10.

P-3.14 Let E = 2p" + yq' where 1 y and p L ¢. What is the
2-norm of E? [Hint: Compute E¥ E and then find the singular values
of E]

P-3.15 Show that the condition number of an eigenvalue A of a ma-
trix A does not change if A is transformed by an orthogonal similarity
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transformation. Is this true for any similarity transformation? What
can be said of the condition number of the corresponding eigenvector?

P-3.16 Consider the matrix obtained from that of example 3.7 in
which the elements —1 above the diagonal are replaced by —«, where
« is a constant. Find bounds similar to those in Example 3.7 for the
condition number of the eigenvalue A; of this matrix.

P-3.17 Under the same assumptions as those of Theorem 3.6, estab-
lish the improved error

s Il — €2
51n0(u,u) S ﬁ

in which € = |A\ — A|. [Hint: Follow proof of theorem 3.6]

NOTES AND REFERENCES. Some of the material in this chapter is based
on [85] and [14]. A broader and more detailed view of perturbation analysis
for matrix problems is the recent book by Stewart and Sun [172]. The treat-
ment of the equivalence between the projectors as defined from the Jordan
canonical form and the one defined from the Dunford integral seems to be
new. The results of Section 2.3 are simpler versions of those found in [82],
which should be consulted for more detail. The notion of condition number
for eigenvalue problems is discussed in detail in Wilkinson [183] who seems
to be at the origin of the notion of condition numbers for eigenvalues and
eigenvectors. [
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Chapter 1V

The Tools of Spectral
Approximation

Many of the algorithms used to approximate spectra of large ma-
trices consist of a blend of a few basic mathematical or algorith-
mic tools, such as projection methods, Chebyshev acceleration,
deflation, shift-and-invert strategies, to name just a few. We
have grouped together these tools and techniques in this chap-
ter. We start with some background on well-known procedures
based on single vector iterations. These have historically provided
the starting point of many of the more powerful methods. Once
an eigenvalue-eigenvector pair is computed by one of the single
vector iterations, it is often desired to extract another pair. This
is done with the help of a standard technique known as defia-
tion which we discuss in some detail. Finally, we will present
the common projection techniques which constitute perhaps the
most important of the basic techniques used in approximating
eigenvalues and eigenvectors.
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1. Single Vector Iterations

One of the oldest techniques for solving eigenvalue problems is the
so-called power method. Simply described this method consists of
generating the sequence of vectors A¥vy where vy is some nonzero
initial vector. A few variants of the power method have been
developed which consist of iterating with a few simple functions
of A. These methods involve a single sequence of vectors and we
describe some of them in this section.

1.1. The Power Method

The simplest of the single vector iteration techniques consists of
generating the sequence of vectors A¥vy where v is some nonzero
initial vector. This sequence of vectors when normalized appropri-
ately, and under reasonably mild conditions, converges to a dom-
inant eigenvector, i.e., an eigenvector associated with the eigen-
value of largest modulus. The most commonly used normalization
is to ensure that the largest component of the current iterate is
equal to one. This yields the following algorithm.

ALGORITHM 4.1 (The Power Method.)

o 1. Start: Choose a nonzero initial vector vy.

e 2. [lterate: for k =1,2,... until convergence, compute

1
vy = —Avg_y
O
where oy, is a component of the vector Av,_; which has the
maximum modulus.

The following theorem establishes a convergence result for the
above algorithm.
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Theorem 4.1 Assume that there is one and only one eigenvalue
A1 of A of largest modulus and that Ay is semi-simple. Then either
the initial vector vy has no component in the invariant subspace
associated with A\ or the sequence of vectors generated by Algo-
rithm 4.1 converges to an eigenvector associated with A\; and oy
converges to Ai.

Proof. Clearly, v, is nothing but the vector A*v, normalized
by a certain scalar ¢y in such a way that its largest component is
unity. Let us decompose the initial vector vy as

P
vo =Y P (4.1)
i=1

where the P;’s are the spectral projectors associated with the dis-
tinct eigenvalues A\;,i = 1,...,p. Recall from (1.19) of Chapter 1,
that AP, = P;(\;P;, + D;) where D; is a nilpotent of index [;, and
more generally, by induction we have A*P; = P,(\P; + Dz-)k. As
a result we obtain,

1
vk

p
3 PN +Dy)Ro

=1

SE

Hence, noting that D; = 0 because )\ is semi-simple,

1 p
= — Y P(NP+ D)oy

akzl

1
- ()\kPlvg—i—ZP (A:P; + Dy)*v )
ak 1=2
A K
= L P+ Z (AiPi + D) Py . (4.2)

O, =2 1
The spectral radius of each operator (\;P; + D;)/)\; is less than
one since |A;/A| < 1 and therefore, its k-th power will converge

to zero. If Pivg = 0 the theorem is true. Assume that Pjvy #
0. Then it follows immediately from (4.2) that vy converges to
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Pyvy normalized so that its largest component is one. That oy
converges to the eigenvalue \; is an immediate consequence of
the relation Av,_1 = agv, and the fact the sequence of vectors v,
converges. [ ]

The proof suggests that the convergence factor of the method
is given by
_ [l
PD |
where A; is the second largest eigenvalue in modulus. This ratio
represents the spectral radius of the linear operator A—llA restricted
to the subspace that excludes the invariant subspace associated
with the dominant eigenvalue. It is a common situation that the
eigenvalues A\ and A\, are very close from one another. As a result
convergence may be extremely slow.

Example 4.1 Consider the Markov Chain matrix Mark(10) which
has been described in Chapter 2. This is a matrix of size n = 55
which has two dominant eigenvalues of equal modulus namely A = 1
and A = —1. As is to be expected the power method applied directly
to A does not converge. To obtain convergence we can for example
consider the matrix I + A whose eigenvalues are those of A shifted
to the right by one. The eigenvalue A = 1 is then transformed into
the eigenvalue A = 2 which now becomes the (only) dominant eigen-
value. The algorithm then converges and the convergence history is
shown in Table 4.1. In the first column of the table we show the iter-
ation number. The results are shown only every 20 steps and at the
very last step when convergence has taken place. The second column
shows the 2-norm of the difference between two successive iterates, i.e.,
|xir1 — zi]|o at teration ¢, while the third column shows the residual
norm ||Az — p(z)z||2, in which u(z) is the Rayleigh quotient of z and
z is normalized to have a 2-norm unity. The algorithm is stopped as
soon at the 2-norm of the difference between two successive iterates
becomes less than € = 10~7. Finally, the last column shows the corre-
sponding eigenvalue estimates. Note that what is shown is simply the
coefficient «y, shifted by —1 to get an approximation to the eigenvalue
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of Mark(10) instead of Mark(10)+ 1. The initial vector in the iteration

is the vector zg = (1,1,...,1)T.

Tteration | Norm of diff. | Res. norm | Eigenvalue

20 0.639D-01 | 0.276D-01 | 1.02591636

40 0.129D-01 | 0.513D-02 | 1.00680780

60 0.192D-02 | 0.808D-03 | 1.00102145

80 0.280D-03 | 0.121D-03 | 1.00014720

100 0.400D-04 | 0.174D-04 | 1.00002078

120 0.562D-05 | 0.247D-05 | 1.00000289

140 0.781D-06 | 0.344D-06 | 1.00000040

161 0.973D-07 | 0.430D-07 | 1.00000005

Table 4.1 Power iteration with A = Mark(10) + I.

If the eigenvalue is multiple, but semi-simple, then the algo-
rithm provides only one eigenvalue and a corresponding eigen-
vector. A more serious difficulty is that the algorithm will not
converge if the dominant eigenvalue is complex and the original
matrix as well as the initial vector are real. This is because for
real matrices the complex eigenvalues come in complex pairs and
as result there will be (at least) two distinct eigenvalues that will
have the largest modulus in the spectrum. Then the theorem
will not guarantee convergence. There are remedies to all these
difficulties and some of these will be examined later.

1.2. The Shifted Power Method

In Example 4.1 we have been lead to use the power method not
on the original matrix but on the shifted matrix A + I. One
observation is that we could also have iterated with a matrix of
the form B(o) = A + oI for any positive ¢ and the choice 0 =1
is a rather arbitrary choice. There are better choices of the shift
as is suggested by the following example.

Example 4.2 Consider the same matrix as in the previous example,
in which the shift o is replaced by ¢ = 0.1. The new convergence
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history is shown in Table 4.2, and indicates a much faster convergence
than before.

Iteration | Norm of diff. | Res. Norm | Eigenvalue
20 0.273D-01 | 0.794D-02 | 1.00524001
40 0.729D-03 | 0.210D-03 | 1.00016755
60 0.183D-04 | 0.509D-05 | 1.00000446
80 0.437D-06 | 0.118D-06 | 1.00000011
88 0.971D-07 | 0.261D-07 | 1.00000002

Table 4.2 Power iteration on A = Mark(10) +0.1 x 1.

More generally, when the eigenvalues are real it is not too dif-
ficult to find the optimal value of o, i.e., the shift that maximizes
the asymptotic convergence rate, see Problem P-4.5. The scalars
o are called shifts of origin. The important property that is used
is that shifting does not alter the eigenvectors and that it does
change the eigenvalues in a simple known way, it shifts them by
0.

1.3. Inverse Iteration

The inverse power method, or inverse iteration, consists simply
of iterating with the matrix A~! instead of the original matrix A.
In other words, the general iterate v, is defined by

L

Ve = —A V-1 - (43)

Q
Fortunately it is not necessary to compute the matrix A~! explic-
itly as this could be rather expensive for large problems. Instead,
all that is needed is to carry out the LU factorization of A prior to
starting the vector iteration itself. Subsequently, one must solve
an upper and lower triangular system at each step. The vector
v Will now converge to the eigenvector associated with the dom-
inant eigenvalue of A~!. Since the eigenvalues of A and A~! are
the inverses of each other while their eigenvectors are identical,
the iterates will converges to the eigenvector of A associated with
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the eigenvalue of smallest modulus. This may or may not be what
is desired but in practice the method is often combined with shifts
of origin. Indeed, a more common problem in practice is to com-
pute the eigenvalue of A that is closest to a certain scalar o and
the corresponding eigenvector. This is achieved by iterating with
the matrix (A — ol)~!. Often, o is referred to as the shift. The
corresponding algorithm is as follows.

ALGORITHM 4.2 : Inverse Power Method

1. Start: Compute the LU decomposition A — ol = LU and
choose an initial vector vy.

2. Iterate: for k =1,2,..., until convergence compute
1 1
v =—(A—ol) oy = —U'L7 oy (4.4)
6797 O

where oy, is a component of the vector (A—ol)™'vy_, which
has the maximum modulus.

Note that each of the computations of y = L 'v,_; and then
v = U~y can be performed by a forward and a backward trian-
gular system solve, each of which costs only O(n?/2) operations
when the matrix is dense. The factorization in step 1 is much
more expensive whether the matrix is dense or sparse.

If A\, is the eigenvalue closest to o then the eigenvalue of largest
modulus of (A—oI)~" will be 1/(\;—0) and so oy, will converge to
this value. An important consideration that makes Algorithm 4.2
quite attractive is its potentially high convergence rate. If \; is
the eigenvalue of A closest to the shift o and As is the next closet
one then the convergence factor is given by

. |>\1—O'|

Y

Pr (4.5)

which indicates that the convergence can be very fast if o is much
closer to the desired eigenvalue \; than it is to As.
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From the above observations, one can think of changing the
shift o occasionally into a value that is known to be a better
approximation of \; than the previous o. For example, one can
replace occasionally o by the estimated eigenvalue of A that is
derived from the information that ay converges to 1/(A\; — o),
i.e., we can take

Onew = Oold + —-
Q
Strategies of this sort are often referred to as shift-and-invert tech-
niques.

Another possibility, which may be very efficient in the Hermi-
tian case, is to take the new shift to be the Rayleigh quotient of
the latest approximate eigenvector vy. One must remember how-
ever, that the LU factorization is expensive so it is desirable to
keep such shift changes to a minimum. At one extreme where the
shift is never changed, we obtain the simple inverse power method
represented by Algorithm 4.2. At the other extreme, one can also
change the shift at every step. The algorithm corresponding to
this case is called Rayleigh Quotient Iteration (RQI) and has been
extensively studied for Hermitian matrices.

ALGORITHM 4.3 Rayleigh Quotient Iteration

1. Start: Choose an initial vector vy such that ||vg||s = 1.

2. Tterate: for k =1,2,..., until convergence compute
or = (Ave_1,v51),
1 _
vy = —(A—opl) v,
Q

where «y, is chosen so that the 2-norm of the vector v iIs
one.

It is known that this process is globally convergent for Her-
mitian matrices, in the sense that «j converges and the vector
v either converges to an eigenvector or alternates between two
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eigenvectors. Moreover, in the first case «j converges cubically
towards an eigenvalue, see Parlett [118]. In the case where v os-
cillates, between two eigenvectors, then oy converges towards the
mid-point of the corresponding eigenvalues. In the non-Hermitian
case, the convergence can be at most quadratic and there are no
known global convergence results except in the normal case. This
algorithm is not much used in practice despite these nice proper-
ties, because of the high cost of the frequent factorizations.

2. Deflation Techniques

Suppose that we have computed the eigenvalue \; of largest mod-
ulus and its corresponding eigenvector u; by some simple algo-
rithm, say algorithm (A), which always delivers the eigenvalue
of largest modulus of the input matrix, along with an eigenvec-
tor. For example, algorithm (A) can simply be one of the single
vector iterations described in the previous section. It is assumed
that the vector u; is normalized so that ||ui||z = 1. The problem
is to compute the next eigenvalue Ay of A. An old technique for
achieving this is what is commonly called a deflation procedure.
Typically, a rank one modification is applied to the original matrix
so as to displace the eigenvalue \{, while keeping all other eigen-
values unchanged. The rank one modification is chosen so that
the eigenvalue Ay becomes the one with largest modulus of the
modified matrix and therefore, algorithm (A) can now be applied
to the new matrix to extract the pair Ao, us.

2.1. Wielandt Deflation with One Vector

In the general procedure known as Wielandt’s deflation only the
knowledge of the right eigenvector is required. The deflated ma-
trix is of the form

A = A—oup® (4.6)
where v is an arbitrary vector such that v#u; = 1, and o is an
appropriate shift. It can be shown that the eigenvalues of A;
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are the same as those of A except for the eigenvalue A\; which is
transformed into the eigenvalue \; — o.

Theorem 4.2 (Wielandt) The spectrum of Ay as defined by
(4.6) is given by

O'(Al) :{)\1—0',)\2,)\3,...,)\p} .

Proof. For i # 1 the left eigenvectors of A satisfy
(AT — ouTw; = \w;

because w; is orthogonal to u;. On the other hand for : = 1, we
have A1U1 = ()\1 — a)ul. |

The above proof reveals that the left eigenvectors ws, ..., w,
are preserved by the deflation process. Similarly, the right eigen-
vector u; is preserved. It is also important to see what becomes
of the other right eigenvectors. For each i, we seek a right eigen-
vector of Ay in the form of u; = u; — y;u;. We have,

Aty = (A= ouv™)(u; — yiuy)
= N — [y + ovu; — oy, (4.7)

Taking v; = 0 shows, as is already indicated by the proposition,
that any eigenvector associated with the eigenvalue A\, remains an
eigenvector of A;, associated with the eigenvalue A\ —o. Fori # 1,
it is possible to select v; so that the vector u; is an eigenvector of
Ay associated with the eigenvalue \;,

UHUZ'

1-— ()\1 —)\Z)/O' '

i(v) = (4.8)
Observe that the above expression is not defined when the de-
nominator vanishes. However, it is known in this case that the
eigenvalue \; = A\ — o is already an eigenvalue of Ay, i.e., the
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eigenvalue \; — o becomes multiple, and we only know one eigen-
vector namely ;.

There are infinitely many different ways of choosing the vector
v. One of the most common choices is to take v = w; the left
eigenvector. This is referred to as Hotelling’s deflation. It has the
advantage of preserving both the left and right eigenvectors of A
as is seen from the fact that 7; = 0 in this situation. Another
simple choice is to take v = wu;. In the next section we will
consider these different possibilities and try to make a rational
choice between them.

Example 4.3 As a test we consider again the matrix Mark(10) seen
is Example 4.1. For u; we use the vector computed from the shifted
power method with shift 0.1. If we take v to be a random vector and
xp to be a random vector, then the algorithm converges in 135 steps
and yields Ao = 0.93715016. The stopping criterion is identical with
the one used in Example 4.1. If we take v = uy or v = (1,1,...,1)7,
then the algorithm converges in 127 steps.

2.2. Optimality in Wieldant’s Deflation

An interesting question that we wish to answer is: among all the
possible choices of v, which one is likely to yield the best possible
condition number for the next eigenvalue A\, to be computed? This
is certainly a desirable goal in practice. We will distinguish the
eigenvalues and eigenvectors associated with the matrix A; from
those of A by denoting them with a tilde. The condition number
of the next eigenvalue X2 to be computed is, by definition,
Cond(3y) = ||@2~||2||3172||2
| (2, w2)|

where w5, Wy are the right and left eigenvectors of A; associated
with the eigenvalue Xo. From what we have seen before, we know
that wy = wy while 4y = us — Y2(v)u; where ~(v) is given by
(4.8). Assuming that ||ws||2 = 1 we get,

Cond(j,) = 12 = 22()uafe (4.9)

| (g, wo)|
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where we have used the fact that (uy,wy) = 0. It is then clear
from (4.9) that the condition number of Ay is minimized whenever

Y2 (v) = ufuy = cos O(uy, us) . (4.10)

Substituting this result in (4.8) we obtain the equivalent condition

AL — A
vy = (1— ! 2> ulluy | (4.11)
o
to which we add the normalization condition,
vlu, = 1. (4.12)

There are still infinitely many vectors v that satisty the above two
conditions. However, we can seek a vector v which is spanned by
two specific vectors. There are two natural possibilities; we can
either take v in the span of (uy,w;) or in the span of (uy, us). The
second choice does not seem natural since the eigenvector us is
not assumed to be known; it is precisely what we are trying to
compute. However, it will illustrate an interesting point, namely
that the choice v = u; may be nearly optimal in realistic situ-
ations. Thus, we will now consider the case v € span{uy,us}.
The other interesting case, namely v € span{uj, w;}, is left as an
exercise, see Exercise P-4.3.

We can write v as v = auy; + Bz in which z is obtained by
orthonormalizing uy against uy, i.e., z = 2/||2||2, 2 = us — uf ugu,.
From (4.12) we immediately get @ = 1 and from (4.11) we obtain

)\1 - )\2 UFUQ

b=

o zHyy
which leads to the expression for the optimal v,

AL — Ao

Uopt = U1 — cotan O(uy,us)z . (4.13)
We also get that

Cond()y) = Cond(\y) sin 0(uy, uy) - (4.14)
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Interestingly enough, when (Ay — A1) is small with respect to o or
when @ is close to m/2 , the choice v = u; is nearly optimal.

This particular choice has an interesting additional property:
it preserves the Schur vectors.

Proposition 4.1 Let u; be an eigenvector of A of norm 1, as-
soctated with the eigenvalue A1 and let Ay = A — auluf. Then
the eigenvalues of Ay are M =M\—o0 and 5\]' =),7=2,3...,n.
Moreover, the Schur vectors associated with j\j,j =1,2,3...,n
are identical with those of A.

Proof. Let AU = UR be the Schur factorization of A, where R
is upper triangular and U is orthonormal. Then we have

AU = [A - ouu U = UR — ourel = U[R — ceel’] .

The result follows immediately. [ ]

Example 4.4 We take again as a test example the matrix Mark(10)
seen is Example 4.1 and Example 4.3. We use the approximate eigen-
vectors u; and us as computed from Example 4.3. We then compute
the left eigenvector wy using again the power method on the deflated
and transposed matrix A7 —oullv. This is done fpur times: first with
v=w = (1,1,...,1)7, then v = uy,

v = (13 _13 1? _la 13 trey (_l)n)Ta

and finally v = a random vector. The condition numbers obtained for
the second eigenvalue for each of these choices are shown in Table 4.3.
See Problem P-4.7 for additional facts concerning this example.

v | Cond(Xy)
wy 1.85153958
Uy 1.85153958

(1,—1,.. .)T 9.87049400
Random 2.27251031

Table 4.3 Condition numbers of the second eigenvalue
for different v’s.
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As is observed here the best condition numbers are obtained for
the first two choices. Note that the vector (1,1,...,1) is a left eigen-
vector associated with the eigenvalue A;. Surprisingly, these best two
condition numbers are equal. In fact computing the inner product of
u1 and uo we find that it is zero, a result that is probably due to the
symmetries in the physical problem. The relation (4.14) indicates that
in this situation the two condition numbers are equal to the condition
number for the undeflated matrix.

2.3. Deflation with Several Vectors.

Let q1, g2, - - . q; be a set of Schur vectors associated with the eigen-
values Ai, A2, ... \;. We denote by (); the matrix of column vec-
tors qi, ¢o, . . . gj. Thus,

Qj = [q17q27"'7qj]

is an orthonormal matrix whose columns form a basis of the
eigenspace associated with the eigenvalues Aj, Ao,... \;. We do
not assume here that these eigenvalues are real, so the matrix @);
may be complex. An immediate generalization of Proposition 4.1
is the following.

Proposition 4.2 Let ¥; be the j X j diagonal matriz
Ej = dlag (0'1, J9,... O'j),

and QQ; an n x j orthogonal matrix consisting of the Schur vectors
of A associated with Ay, ..., \j. Then the eigenvalues of the matriz

are 5\2 =\ —o; fori < j and 5\2 = \; for i>j. Moreover, its
associated Schur vectors are identical with those of A.
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Proof. Let AU = UR be the Schur factorization of A. We have

AU = [A-Q;%;Q"U =UR - Q;3;E/

J=3 0

where E; = [e1, ey, ...e;]. Hence
AU = U[R - E;3;E]]

and the result follows. ]

Clearly, it is not necessary that ¥; be a diagonal matrix. We
can for example select it to be a triangular matrix. However, it is
not clear how to select the nondiagonal entries in such a situation.
An alternative technique for deflating with several Schur vectors
is described in Exercise P-4.6.

2.4. Partial Schur Decomposition.

It is interesting to observe that the preservation of the Schur vec-
tors is analogous to the preservation of the eigenvectors under
Hotelling’s deflation in the Hermitian case. The previous propo-
sition suggests a simple incremental deflation procedure consisting
of building the matrix ); one column at a time. Thus, at the j-th
step, once the eigenvector u;,, of A; is computed by the appro-
priate algorithm (A) we can orthonormalize it against all previous
¢;’s to get the next Schur vector ¢;4; which will be appended to
q; to form the new deflation matrix ;1. It is a simple exercise
to show that the vector ¢;4; thus computed is a Schur vector as-
sociated with the eigenvalue A;y; and therefore at every stage of
the process we have the desired decomposition

AQ; = Q;R;, (4.15)

where R; is some j x j upper triangular matrix.

More precisely we may consider the following algorithm, in
which the successive shifts o; are chosen so that for example o; =
i
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ALGORITHM 4.4 Schur Wielandt Deflation
Fori=0,1,2,...,j — 1 do:

1. Define A; = A; | — 0, 1¢;_1q/" | (initially define Ay = A)
and compute the dominant eigenvalue )\; of A; and the cor-
responding eigenvector ;.

2. Orthonormalize u; against q1,qs,...,q; 1 to get the vector
4q;-

With the above implementation, we may have to perform most
of the computation in complex arithmetic even when A is real.
Fortunately, when the matrix A is real, this can be avoided. In
this case the Schur form is traditionally replaced by the quasi-
Schur form, in which one still seeks for the factorization (4.2)
but simply requires that the matrix R;, be quasi-triangular, i.e.
one allows for 2 x 2 diagonal blocks. In practice, if A;;; is com-
plex, most algorithms do not compute the complex eigenvector
yj+1 directly but rather deliver its real and imaginary parts yg, yr
separately. Thus, the two eigenvectors yg + iy; associated with
the complex pair of conjugate eigenvalues \jii, A\jio = 5\j+1 are
obtained at once.

Thinking in terms of bases of the invariant subspace instead
of eigenvectors, we observe that the real and imaginary parts of
the eigenvector generate the same subspace as the two conjugate
eigenvectors and therefore we can work with these two real vectors
instead of the (complex) eigenvectors. Hence if a complex pair
occurs, all we have to do is orthogonalize the two vectors yg, yr
against all previous ¢;’s and pursue the algorithm in the same
way. The only difference is that the size of (); increases by two
instead of just one in these instances.

2.5. Practical Deflation Procedures

To summarize, among all the possible deflation procedures we
can use to compute the next pair A, us, the following ones are
the most useful in practice.
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1. v = wy the left eigenvector. This has the disadvantage of
requiring the left and right eigenvector. On the other hand
both right and left eigenvectors of A; are preserved.

2. v = u; which is often nearly optimal and preserves the Schur
vectors.

3. Use a block of Schur vectors instead of a single vector.

From the point of view of the implementation an important
consideration is that we never need to form the matrix A; ex-
plicitly. This is important because in general A; will be a full
matrix. In many algorithms for eigenvalue calculations, the only
operation that is required is an operation of the form y := A;x.
This operation can be performed as follows:

(a) Compute the vector y := Az;
(b) Compute the scalar t = o v/x;

(c) Compute y :=y —t uy.

The above procedure requires only that the vectors u;, and v be
kept in memory along with the matrix A. It is possible to deflate
A again into Ay , and then into A3 etc. At each step of the

process we have
H

i

Ai = Az’fl — O'az"U

Here one only needs to save the vectors u; and v; along with the
matrix A. However, one should be careful about the usage of
deflation in general. It should not be used to compute more than
a few eigenvalues and eigenvcectors. This is especially true in
the non Hermitian case because of the fact that the matrix A;
will accumulate errors from all previous computations and this
could be disastrous if the currently computed eigenvalue is poorly
conditioned.
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3. General Projection Methods

Most eigenvalue algorithms employ in one way or another a pro-
jection technique. The projection process can be the body of the
method itself or it might simply be used within a more complex
algorithm to enhance its efficiency. A simple illustration of the
necessity of resorting to a projection technique is when one uses
the power method in the situation when the dominant eigenvalue
is complex but the matrix A is real. Although the usual sequence
zj1 = «ajAz; where a; is a normalizing factor, does not con-
verge a simple analysis shows that the subspace spanned by the
last two iterates x;41,2; will contain converging approximations
to the complex pair of eigenvectors. A simple projection tech-
nique onto those vectors will extract the desired eigenvalues and
eigenvectors, see Exercise P-4.2 for details.

A projection method consists of approximating the exact eigen-
vector u, by a vector % belonging to some subspace IC referred to
as the subspace of approximants or the right subspace, by impos-
ing the so-called Petrov-Galerkin method that the residual vector
of @ be orthogonal to some subspace L, referred to as the left
subspace. There are two broad classes of projection methods: or-
thogonal projection methods and oblique projection methods. In
an orthogonal projection technique the subspace L is the same as
KC. In an oblique projection method L is different from X and can
be totally unrelated to it.

Not surprisingly, if no vector of the subspace K comes close
to the exact eigenvector u, then it is impossible to get a good
approximation % to u from I and therefore the approximation
obtained by any projection process based on I will be poor. If,
on the other hand, there is some vector in /C which is at a small
distance € from u then the question is: what accuracy can we
expect to obtain? The purpose of this section is to try to answer
this question.
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3.1. Orthogonal Projection Methods

Let A be an n x n complex matrix and K be an m-dimensional
subspace of C". As a notational convention we will denote by the
same symbol A the matrix and the linear application in C" that it
represents. We consider the eigenvalue problem: find u belonging
to C" and X belonging to C such that

Au = u. (4.16)

An orthogonal projection technique onto the subspace K seeks
an approximate eigenpair A, % to the above problem, with A in C
and u in K, such that the following Galerkin condition is satisfied:

Ai—Xi LK, (4.17)
or, equivalently,
(Ad— Mi,v) = 0, YveK. (4.18)

Assume that some orthonormal basis {vi, vy, ..., v,} of K
is available and denote by V the matrix with column vectors
U1, V9, ...,U,. Then we can solve the approximate problem nu-
merically by translating it into this basis. Letting

i = Vy, (4.19)
equation (4.19) becomes
(AVy — A\Vy,v;) =0, j=1,...,m.
Therefore, y and A must satisfy
Bny = My (4.20)

with

B, = V7AV.
If we denote by A,, the linear transformation of rank m defined by
A, = P, AP, then we observe that the restriction of this operator
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to the subspace K is represented by the matrix B,, with respect to
the basis V. The following is a procedure for computing numeri-
cally the Galerkin approximations to the eigenvalues/eigenvectors
of A known as the Rayleigh-Ritz procedure.

ALGORITHM 4.5 Rayleigh-Ritz Procedure:

1. Compute an orthonormal basis {v;};—1__m of the subspace
IC. Let V = [v1,v9, ..., 0n]

2. Compute B,, = VEAV;

3. Compute the eigenvalues of By, and select the k desired ones
Ayt =1,2,...,k, where k < m.

4. Compute the eigenvectors y;,i = 1,...,k, of By, associated
with X\;;¢ = 1,...,k, and the corresponding approximate
eigenvectors of A, u; = Vy;,i=1,...,k.

The above process only requires basic linear algebra computa-
tions. The numerical solution of the m x m eigenvalue problem
in steps 3 and 4 can be treated by standard library subroutines
such as those in EISPACK. Another important note is that in
step 4 one can replace eigenvectors by Schur vectors to get ap-
proximate Schur vectors u; instead of approximate eigenvectors.
Schur vectors y; can be obtained in a numerically stable way and,
in general, eigenvectors are more sensitive to rounding errors than
are Schur vectors.

We can reformulate orthogonal projection methods in terms of
projection operators as follows. Defining P,. to be the orthogonal
projector onto the subspace IC, then the Galerkin condition (4.17)
can be rewritten as

P(Ai—Xi)=0, \eC, aek

or,

P Ai=Xi, \eC,ack. (4.21)
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Note that we have replaced the original problem (4.16) by an
eigenvalue problem for the linear transformation P, Ajx which is
from KC to K. Another formulation of the above equation is

PAP ii=\i, AeC, i€ C" (4.22)
which involves the natural extension
A, =P AP,

of the linear operator A}, = P, Ak to the whole space. In addition
to the eigenvalues and eigenvectors of A/ | A,, has zero as a trivial
eigenvalue with every vector of the orthogonal complement of /C,
being an eigenvector. Equation (4.21) will be referred to as the
Galerkin approximate problem.

The following proposition examines what happens in the par-
ticular case when the subspace I is invariant under A.

Proposition 4.3 If K is invariant under A then every approzi-
mate eigenvalue / (right) eigenvector pair obtained from the or-
thogonal projection method onto K is ezxact.

Proof. An approximate eigenpair )\, @ is defined by
P (Al — i) =0,

where @ is a nonzero vector in K and A € €. If K is invariant
under A then Au belongs to K and therefore P, Au = Au. Then
the above equation becomes

Au—Adu=0,
showing that the pair 5\, u is exact. [
An important quantity for the convergence properties of pro-

jection methods is the distance ||(I — P, )ul|> of the exact eigen-
vector u, supposed of norm 1, from the subspace IC. This quantity
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plays a key role in the analysis of projection methods. First, it is
clear that the eigenvector u cannot be well approximated from IC
if ||(I — P, )ul|2 is not small because we have

la = ulla 2 [|(1 = Py )ull2.

The fundamental quantity ||(/ — P, )ul|2 can also be interpreted
as the sine of the acute angle between the eigenvector u and the
subspace IC. It is also the gap between the space K and the linear
span of u. The following theorem establishes an upper bound
for the residual norm of the ezact eigenpair with respect to the
approximate operator A,,, using this angle.

Theorem 4.3 Lety = ||P.A(I—=P,)||2. Then the residual norms
of the pairs \,P.u and \,u for the linear operator A,, satisfy
respectively

[(Am = AD)Pull < y[[(1 = P)ulla (4.23)
[(Am = Aully < /A2 + 92 [[(T = Peull - (4.24)
Proof. For the first inequality we use the definition of A,, to get
[(Am = ADPeulls = [|P(A=AD(u— (I = Peu)l2
= [P(A=ADI = Pe)ull
= [P(A=ADT = Po)(I =Py )ull
< AT =Pelullz -
As for the second inequality we simply notice that
(A, = AM)u = (A —AD)Pou+ (A — M) —P)u
(A = ADPu—AXI—Pou .

Using the previous inequality and the fact that the two vectors
on the right hand side are orthogonal to each other we get

(A = Mull; = (Am = ADPeulls + [APNI = Pe)ull;
< (P PPN = Pe)ull;

which completes the proof. [
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Note that 7 is bounded from above by [|A|. A good ap-
proximation can therefore be achieved by the projection method
in case the distance ||(I — P, )ul|2 is small, provided the approxi-
mate eigenproblem is well conditioned. Unfortunately, in contrast
with the Hermitian case the fact that the residual norm is small
does not in any way guarantee that the eigenpair is accurate, be-
cause of potential difficulties related to the conditioning of the
eigenvalue.

If we translate the inequality (4.23) into matrix form by ex-
pressing everything in an orthonormal basis V' of I, we would
write P, = VVH and immediately obtain

I(VEAV = ANV ully < y[I(1 = VV )ull2,

which shows that A can be considered as an approximate eigen-
value for B, = V¥ AV with residual of the order of (I — P, )u. If
we scale the vector V#u to make it of 2-norm unity, and denote
the result by y, we can rewrite the above equality as

I =Py )ulls
[Pulls

The above inequality gives a more explicit relation between the
residual norm and the angle between u and the subspace K.

I(VEAV — XDyl < v = v tan f(u, K).

3.2. The Hermitian Case

The approximate eigenvalues computed from orthogonal projec-
tion methods in the particular case where the matrix A is Her-
mitian, satisfy strong optimality properties which follow from
the Min-Max principle and the Courant characterization seen in
Chapter 1. These properties follow by observing that (A,,z, x) is
the same as (Ax,x) when x runs in the subspace K. Thus, if we
label the eigenvalues decreasingly, i.e., Ay > Xy > ... > A,, we
have
Y (PKAPKxﬂx) (PKAx7picx)

A= :ver%%c);(éﬂ (x,x) :xer?c%éo (x,x)
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(Az, )
max
zek, 220 (1, 1)

(4.25)

This is because P .z = z for any element in K. Similarly, we can
show that A
~ xr,x
Am = min ( )
e, x#£0 (1‘, IL')

More generally, we have the following result.

Proposition 4.4 The i—th largest approzimate eigenvalue of a
Hermitian matriz A, obtained from an orthogonal projection
method onto a subspace IC, satisfies,

~ A
A = max min (4z, 2) : (4.26)
dz'ni(CS’;::i vesart (@, )

As an immediate consequence we obtain the following corol-
lary.

Corollary 4.1 Fori=1,2,...,m the following inequality holds

N >N (4.27)
Proof. This is because,
~ A A
\; = max min (A, 7) < max min (Az, 7) =\ .
SCK  zeS,z#0 (gj, :U) SC(D” r€S,57#0 (gj, :U)
dim(S)=i dim(S)=i
|

A similar argument based on the Courant characterization re-
sults in the following theorem.

Theorem 4.4 The approximate eigenvalue N\ and the correspond-
ing eigenvector u; are such that
~ (Aﬂl, 111) (Ax, ZU)

YT @) sekago (z,7)
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and for i > 1:
N Auy, Az,
i = ((Nu ~U) - mnax Az, 7) (4.28)
g, U;) zek,a#0, (x,x)
ﬁfm:...:ﬂf_lx:ﬂ

One may suspect that the general bounds seen earlier for non-
Hermitian matrices may be improved for the Hermitian case. This
is indeed the case. We begin by proving the following lemma.

Lemma 4.1 Let A be a Hermitian matrix and u an eigenvector
of A associated with the eigenvalue \. Then the Rayleigh quotient
p = pa(P.u) satisfies the inequality

(1 = P )ulls

[
A=l < A= AT (4.29)
1Pl

Proof. From the equality
(A= ADPu= (A=A (u— (I —P.u) =—(A—=A)(I —P.)u
and the fact that A is Hermitian we get,

((A=X)P,.u, P.u)
(PouPou)

(A~ A = Po)u, (I — Pu)
(PKU7 PK:U)

A—pl = |

The result follows from a direct application of the Cauchy-Schwartz
inequality. [

Assuming as usual that the eigenvalues are labeled decreas-
ingly, and letting p; = pa(Pu1), we can get from (4.25) that

I = Puall

0< A=A <A — < [JA=\I|s Pouil2
 Will2
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A similar result can be shown for the smallest eigenvalue. We
can extend this inequality to the other eigenvalues at the price
of a little complication in the equations. In what follows we will
denote by Q; the sum of the spectral projectors associated with
the approximate eigenvalues 5\1, 5\2, cee A\i_1. For any given vector
x, (I — Qz)x will be the vector obtained by orthogonalizing x
against the first ¢ — 1 approximate eigenvectors. We consider a
candidate vector of the form (I — Q;)P u; in an attempt to use
an argument similar to the one for the largest eigenvalue. This
is a vector obtained by projecting u; onto the subspace K and
then stripping it off its components in the first ¢ — 1 approximate
eigenvectors.

Lemma 4.2 Let Q; be the sum of the spectral projectors associ-
ated with the approrimate eigenvalues Ay, Aa, ..., N\i_1 and define

pi = pa(x;), where
_ (I_ Ql)PKul
(1 - Qi)PKUi||2

Then

|Quualls + (1 — P )uills

|Ai = pi| < [|A = Al ] =
11 = Qi)Puill3

(4.30)

Proof. To simplify notation we set o = 1/||(I — Q;)P, |2
Then we write,

(A — )\Z[)ib‘z = (A — )\J)(a:l — Oéuz') s
and proceed as in the previous case to get,
|Xi— | = (A= XDz, )| = [((A=NI) (2 — aw;), (z;—awy))| -

Applying Cauchy-Schwartz inequality to the above equation, we
get
i = sl = 1A = Nid[Ja]l s — a3
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We can rewrite ||z; — cu;||? as

lz: — aulls = o®|(I — Qi)Peus — usll3

= &2||(I - Qi) (Peus — i) — Quuil|2 .

Using the orthogonality of the two vectors inside the norm bars,
this equality becomes

lz; — awill; = o (17 = Qi) (Peus — wi)ll3 + | Quuill3)
< o (I = Po)uills + 1 Qiill3)

This establishes the desired result. ]

The vector x; has been constructed in such a way that it is orthog-
onal to all previous approximate eigenvectors uy, ..., u;_1. We can
therefore exploit the Courant characterization (4.28) to prove the
following result.

Theorem 4.5 Let Q; be the sum of the spectral projectors asso-
ciated with the approximate eigenvalues My Aay ooy Ni—1. Then the
error between the i-th exact and approximate eigenvalues \; and
S\i 18 such that

will3 + [[(1 = P Juill3

0< M — X < || A = AT, 1<etullz £ ] )
(I — Qi)Pull3

(4.31)

Proof. By (4.28) and the fact that z; belongs to K and is orthog-
onal to the first 7 — 1 approximate eigenvectors we immediately
get

0<Xi— N <\ —

The result follows from the previous lemma. [

We point out that the above result is valid for 7 = 1, provided
we define 1 = 0. The quantities ||Q;u;||2 represent the cosines
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of the acute angle between u; and the span of the previous ap-
proximate eigenvectors. In the ideal situation this should be zero.
In addition, we should mention that the error bound is semi-a-
priori, since it will require the knowledge of previous eigenvectors
in order to get an idea of the quantity ||Q;u;||s.

We now turn our attention to the eigenvectors.

Theorem 4.6 Lety = [|[P.A(I—"P,)|2, and consider any eigen-
value A of A with associated eigenvector u. Let \ be the approzi-
mate eigenvalue closest to A and 0 the distance between \ and the
set of approzimate eigenvalues other than . Then there exists an
approzimate eigenvector u associated with \ such that

sin [f(u, w)] < 4/1+ Z—j sin [0(u, )] (4.32)

Proof.

wsin ¢

v COS @

Figure 4.1 Projections of the eigenvector u onto K
and then onto .

Let us define the two vectors

P.u (I —P)u
v = and w=-—-—5L
| Pyull2 (I =Py )ulla

(4.33)
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and denote by ¢ the angle between u and P, u, as defined by
cos¢ = ||P.ul|2. Then, clearly

U = vcos ¢+ wsin @,
which, upon multiplying both sides by (A — A\I) leads to
(A= X)v cosp+ (A—A)w sing =0 .

We now project both sides onto I, and take the norms of the
resulting vector to obtain

P (A — Al)vlla cos¢ = ||P.(A = AX)wl|z sing . (4.34)
For the-right-hand side note that
[Pe(A=ADwlly = |[P(A= A = Pewl:
= [PeAI =Powlla <7 . (4.39)
For the left-hand-side, we decompose v further as
V=1 CoOsSw + z sinw,

in which @ is a unit vector from the eigenspace associated with 5\,
2 is a unit vector in IC that is orthogonal to %, and w is the acute
angle between v and u. We then obtain,

P (A—XN)v = P.(A— A)[coswi + sinwz]
= (A= N cosw+ P (A — A)zsinw. (4.36)
The eigenvalues of the restriction of P, (A—AI) to the orthogonal

of ware \; — A, for j =1,2,...m, and \; # . Therefore, since z
is orthogonal to u, we have

1P (A — AD)z|ls > 0. (4.37)

The two vectors in the right hand side of (4.36) are orthogonal
and by (4.37),

1P (A= )|z = |5\ — M cos? w +sin® w||P (A — \)z||3
> 0% sin*w (4.38)
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To complete the proof we refer to Figure 4.1. The projection
of u onto u is the projection onto u of the projection of u onto
IC. Tts length is cos ¢ cosw and as a result the sine of the angle 0
between u and # is given by

sin?f = 1—cos’¢ cos’w
= 1—cos?’¢ (1—sin’w)
= sin® ¢ +sin*w cos’ ¢ . (4.39)

Combining (4.34), (4.35), (4.38) we obtain that
sinw cos ¢ < % sin ¢

which together with (4.39) yields the desired result. n

This is a rather remarkable result given that it is so general.
It tells us among other things that the only condition we need
in order to guarantee that a projection method will deliver good
approximation in the Hermitian case is that the angle between
the exact eigenvector and the subspace I be sufficiently small.

As a consequence of the above result we can establish bounds
on eigenvalues that are somewhat simpler than those of Proposi-
tion 4.5. This results from the following proposition.

Proposition 4.5 The eigenvalues \ and X in Theorem 4.6 are
such that .
A=A < ||A — Mo sin® O(u, @) . (4.40)

Proof. We start with the simple observation that A — A =
((A—=X)a,u). Letting o = (u, &) = cos @(u, @) we can write
A=A=((A=AD)(i—ou), i) = (A= X)(i — au), i@ — au)

The result follows immediatly by taking absolute values, exploit-
ing the Cauchy-Schwartz inequality, and observing that ||a —
aully = sinf(u, @). u
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3.3. Oblique Projection Methods

In an oblique projection method we are given two subspaces L
and IC and seek an approximation 4 € K and an element A\ of C
that satisfy the Petrov-Galerkin condition,

(A= X)i,v) =0 Ywvecl. (4.41)

The subspace IC will be referred to as the right subspace and £
as the left subspace. A procedure similar to the Rayleigh-Ritz
procedure can be devised by again translating in matrix form
the approximate eigenvector @ in some basis and expressing the
Petrov-Galerkin condition (4.41). This time we will need two
bases, one which we denote by V for the subspace K and the
other, denoted by W, for the subspace £. We assume that these
two bases are biorthogonal, i.e., that (v;, w;) = ¢;;, or

WY =1
where [ is the identity matrix. Then, writing 2 = Vy as before,

the above Petrov-Galerkin condition yields the same approximate
problem as (4.20) except that the matrix B,, is now defined by

B, = WHAV.

We should however emphasize that in order for a biorthogonal
pair V, W to exist the following additional assumption for £ and
KC must hold.

For any two bases V and W of K and L respectively,
det(WHV) £0 . (4.42)

In order to interpret the above condition in terms of operators
we will define the oblique projector Qﬁ onto K and orthogonal to
L. For any given vector x in C", the vector Qﬁx is defined by

QﬁncElC
x—QﬁxJ_ﬁ.
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Note that the vector Qﬁx is uniquely defined under the assump-
tion that no vector of the subspace L is orthogonal to . This
fundamental assumption can be seen to be equivalent to assump-
tion (4.42). When it holds the Petrov-Galerin condition (4.18)
can be rewritten as

Qf(Au—Aa) = 0 (4.43)

or
Q“ Al = M.

Thus, the eigenvalues of the matrix A are approximated by those
of A" = QﬁAVC- We can define an extension A4,, of A/ analogous
to the one defined in the previous section, in many different ways.
For example introducing Qﬁ before the occurrences of 4 in the
above equation would lead to A4,, = QﬁAQﬁ. In order to be able
to utilize the distance ||(I — P, )ul|z in a-priori error bounds a
more useful extension is

Ay = QEAP, .

With this notation, it is trivial to extend the proof of Propo-
sition 4.3 to the oblique projection case. In other words, when KC
is invariant, then no matter which left subspace £ we choose, the
oblique projection method will always extract exact eigenpairs.

We can establish the following theorem which generalizes The-
orem 4.3 seen for the orthogonal projection case.

Theorem 4.7 Let v = [|Q%(A — A )(I — P.)|l2. Then the fol-

lowing two inequalities hold:

[(Am = ADPulla < [T = Peulls (4.44)

[(Am = ADulls < /AP + 92 [[(1 = P ullz - (4.45)
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Proof. For the first inequality, since the vector Py belongs to
K we have Q5P =P, and therefore

(A — M)Pou = Q5(A— AP u
= QY(A—\)(Peu—u)
= —QY(A-A)(I—-Pu.

Since (I — P,.) is a projector we now have
(Am = A)Peu=—Q(A—A)(I —P.)(I — Py )u.

Taking Euclidean norms of both sides and using the Cauchy-
Schwartz inequality we immediately obtain the first result.
For the second inequality, we write

(A —ADu = (A — A [Pou+ (I — P, )]
= (Ap = AP+ (A — M) — P )u .

Noticing that A,,(I —P,) = 0 this becomes
(A — A)u= (A — A[)Pou— NI —Ppu .

Using the orthogonality of the two terms in the right hand side,
and taking the Euclidean norms we get the second result. [ ]

In the particular case of orthogonal projection methods, Qﬁ is
identical with P, and we have |Q%||; = 1. Moreover, the term v
can then be bounded from above by || A||. It may seem that since
we obtain very similar error bounds for both the orthogonal and
the oblique projection methods, we are likely to obtain similar
errors when we use the same subspace. This is not the case in
general. One reason is that the scalar v can no longer be bounded
by [|Al]2 since we have ||Q%[|; > 1 and ||Q% || is unknown in gen-
eral. In fact the constant v can be quite large. Another reason
which was pointed out earlier is that residual norm does not pro-
vide enough information. The approximate problem can have a
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much worse condition number if non-orthogonal transformations
are used, which may lead to poorer results. This however is only
based on intuition as there are no rigorous results in this direction.

The question arises as to whether there is any need for oblique
projection methods since dealing with oblique projectors may be
numerically unsafe. Methods based on oblique projectors can
offer some advantages. In particular they may allow to compute
approximations to left as well as right eigenvectors simultaneously.
There are methods based on oblique projection techniques that
require also far less storage than similar orthogonal projections
methods. This will be illustrated in Chapter VI.

4. Chebyshev Polynomials

Chebyshev polynomials are crucial in the study of the Lanczos
algorithm and more generally of iterative methods in numerical
linear algebra, such as the conjugate gradient method. They are
useful both in theory, when studying convergence, and in practice,
as a means of accelerating single vector iterations or projection
processes.

4.1. Real Chebyshev Polynomials

The Chebyshev polynomial of the first kind of degree £ is defined
by
Ci(t) = cos[k cos '(t)] for —1<t<1. (4.46)

That this is a polynomial with respect to ¢t can be easily shown
by induction from the trigonometric relation

cos[(k + 1)0] + cos[(k — 1)8] = 2 cos ) cos k0,

and the fact that Cy(t) = ¢,Cy(t) = 1. Incidentally, this also
shows the important three-term recurrence relation

Croi(t) = 2tC(t) — Chr(t) .
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It is important to extend the definition (4.46) to cases where [t]| >
1 which is done with the following formula,

C(t) = cosh [k cosh™"(¢)], [t|>1. (4.47)

This is readily seen by passing to complex variables and using the
definition cos 6 = (e +e7%) /2. As a result of (4.47) we can derive
the expression,

Cult) =

(t+vE=1) + (t+VE = 1)"“} . (4.48)

which is valid for || > 1 but can also be extended to the case
|t|<1. As a result, one may use the following approximation for
large values of k

1
Gty 2 5 (t+ V- 0)" for [f21. (4.49)

In what follows we denote by [P, the set of all polynomials of
degree k. An important result from approximation theory, which
we state without proof, is the following theorem.

Theorem 4.8 Let [«, 3] be a non-empty interval in R and let
be any real scalar such with v > (3. Then the minimum

min max |p(t
pe Pyp(m)=1 t€laf] p(2)

15 reached by the polynomial
R Ch (1 + 221—@)
Ck t) = .
Ci (1+232)

For a proof see [16]. The maximum of Cj, for ¢ in [—1,1] is 1
and as a corollary we have

p(1)| ! !

TG+ D) G

in which u = (a+ (3)/2 is the middle of the interval. Clearly, the
results can be slightly modified to hold for the case where v < «,
i.e., when v is to the left of the interval.

min max
pe Py, p(v)=1 t€lef]
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4.2. Complex Chebyshev Polynomials

The standard definition given in the previous section for Cheby-
shev polynomials of the first kind, see equation (4.46), extends
without difficulty to complex variables. First, as was seen be-
fore, when ¢ is real and |t| > 1 we can use the alternative defi-
nition, Cy(t) = cosh[k cosh™(¢)], 1 < |t| . More generally, one
can unify these definitions by switching to complex variables and
writing

Cy(z) = cosh(k(), where cosh(()==z.

Defining the variable w = €S, the above formula is equivalent to

Cr(z) = %[wk +w "] where z= %[w +w Y. (4.50)
We will use the above definition for Chebyshev polynomials in
C. Note that the equation %(w +w™") = 2 has two solutions w
which are inverses of each other, and as a result the value of Cy(2)
does not depend on which of these solutions is chosen. It can be
verified directly that the C’s defined by the above equations are
indeed polynomials in the z variable and that they satisfy the
three term recurrence

Cri1(2) =220%(2) — C_1(2), (4.51)

with Cy(z) =1 and C4(z) = =.

As is now explained, Chebyshev polynomials are intimately
related to ellipses in the complex plane. Let C, be the circle
of center the origin and radius p. Then the so-called Joukowski

mapping

J(w) = %[w "

transforms C), into an ellipse of center the origin, foci —1,1 and
major semi-axis 3[p + p'] and minor semi-axis 1|p — p*|. This
is illustrated in Figure 4.2.
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Figure 4.2 The Joukowski mapping transforms a cir-
cle into an ellipse in the complex plane.

There are two circles which have the same image by the map-
ping J(w), one with the radius p and the other with the radius
p~!. So it suffices to consider those circles with p > 1. Note that
the case p = 1 is a degenerate case in which the ellipse F(0,1, —1)
reduces the interval [—1, 1] traveled through twice.

One important question we now ask is whether or not a min-
max result similar to the one of Theorem 4.8 holds for the complex
case. Here the maximum of |p(2)| is taken over the ellipse bound-
ary and 7y is some point not enclosed by the ellipse. A 1963 paper
by Clayton [19] was generally believed for quite some time to have
established the result, at least for the special case where the ellipse
has real foci and -~y is real. It was recently shown by Fischer and
Freund that in fact Clayton’s result was incorrect in general [46].
On the other hand, Chebyshev polynomials are asymptotically
optimal and in practice that is all that is needed.

To show the asymptotic optimality, we start by stating a
lemma due to Zarantonello, which deals with the particular case
where the ellipse reduces to a circle. This particular case is im-
portant in itself.

Lemma 4.3 (Zarantonello) Let C(0, p) be a circle of center the
origin and radius p and let v a point of C not enclosed by C(0, p).
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Then,

min max |p(e)| = (’0 )k , (4.52)

pe Py, p(y)=1 = € C0p kel

the minimum being achieved for the polynomial (2/v)*.

Proof. See reference [132] for a proof. n

Note that by changing variables, shifting and rescaling the
polynomial, we also get for any circle centered at ¢ and for any
scalar « such that |y| > p,

min max |p(2)] = ( P >k

pe Py piy)=1 =z € Clep |f)/ — C|

We now consider the general case of an ellipse centered at the
origin, with foci 1, —1 and semi-major axis a, which can be consid-
ered as mapped by .J from the circle C'(0, p), with the convention
that p > 1. We denote by £, such an ellipse.

Theorem 4.9 Consider the ellipse E, mapped from C(0,p) by
the mapping J and let v any point in the complex plane not en-
closed by it. Then
k k —k
. +
P < min max |p(z)] < %
pe Py p(m)=1 = € Ep |wh +w |

(4.53)

in which w., is the dominant root of the equation J(w) = 1.

Proof. We start by showing the second inequality. Any poly-
nomial p of degree k satisfying the constraint p(y) = 1 can be
written as, '
Z?:o §%’

?zo &7

p(z) =
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A point z on the ellipse is transformed by J from a certain w in
C(0, p). Similarly, let w, be one of the two inverse transforms of
~v by the mapping, namely the one with largest modulus. Then,
p can be rewritten as

E e (wi 4w
p(Z)— ]:05]( + )

= : = 4.54
E?:o §j (wh +w3y”) ( )

Consider the particular polynomial obtained by setting & = 1
and & = 0 for j # k,

wk 4+ w=k

k —k
wy + w,

p'(z) =

which is a scaled Chebyshev polynomial of the first kind of degree
k in the variable z. It is not too difficult to see that the maximum
modulus of this polynomial is reached in particular when w = pe®
is real, i.e., when w = p. Thus,

k —k
) Pt +p
a. = —
%E}: p*(2)l [wk + w_ k|

which proves the second inequality.
To prove the left inequality, we rewrite (4.54) as

<wk> E?:O fj(’LUIH—j _|_wlc—j)

S0 &i(wy ™ +wy)

p(2) = (=&

and take the modulus of p(z2),
—k E?:O é‘j (wk-i-j + wk—j)

Sio&i(wy ™ +uwy)

P
p(2)] = ——
|w7| b

The polynomial in w of degree 2k inside the large modulus bars
in the right-hand-side is such that its value at w, is one. By
Lemma 4.3, the modulus of this polynomial over the circle C'(0, p)
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is not less than (p/|w,|)?*, i.e., for any polynomial, satisfying the

constraint p(y) = 1 we have,

—k 2% k

p p p
max [p(z)| > —~ = )
<€ Ep w7 Jwy |2 |w, |F

This proves that the minimum over all such polynomials of the
maximum modulus on the ellipse E, is > (p/|w,|). ]

The difference between the left and right bounds in (4.53)
tends to zero as k increases to infinity. Thus, the important point
made by the theorem is that, for large k&, the Chebyshev polyno-
mial

ooy W rwF N Cwtw!
p(z)—w];jLw;k, where 2z = 5
is close to the optimal polynomial. In other words these polyno-
mials are asymptotically optimal.

For a more general ellipse centered at ¢, and with focal dis-

tance d, a simple change of variables shows that the near-best

polynomial is given by
z—c
C ( d ) '

We should point out that an alternative result, which is more
complete, has been proven by Fischer and Freund in [45].

PROBLEMS

P-4.1 What are the eigenvalues and eigenvectors of (A—oI)~!. What
are all the shifts o that will lead to a convergence towards a given
eigenvalue A7

P-4.2 Consider a real nonsymmetric matrix A. The purpose of this
exercise is to develop a generalization of the power method that can
handle the case where the dominant eigenvalue is complex (i.e., we have
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a complex conjugate pair of dominant eigenvalues). Show that by a
projection process onto two successive iterates of the power method
one can achieve convergence towards the dominant pair of eigenvalues
[Consider the diagonalizable case only]. Without giving a proof, state
what the rate of convergence toward the pair of complex conjugate
eigenvectors should be. Develop a simple version of a corresponding
algorithm and then a variation of the algorithm that orthonormalizes
two successive iterates at every step, i.e., starting with a vector = of
2-norm unity, the iterates are as follows,

2>

Tnew - — where 1 := Axold — (A(L‘old, xold)xold .

12]]2

Does the orthogonalization have to be done at every step?

P-4.3 By following a development similar to that subsection 4.2, find
the v vector for Wielandt deflation, which minimizes the condition
number for A;, among all vectors in the span of uy,w;. Show again
that the choice v = u; is nearly optimal when A; — Ag is small relative
to o.

P-4.4 Consider the generalized eigenvalue problem Az = ABx. How
can one generalize the power method? The shifted power method?
and the shift-and-invert power method?

P-4.5 Assume that all the eigenvalues of a matrix A are real and that
one uses the shifted power method for computing the largest, i.e., the
rightmost eigenvalue of a given matrix. What are all the admissible
shifts, i.e., those that will lead to convergence toward the rightmost
eigenvalue? Among all the admissible choices which one leads to the
best convergence rate?

P-4.6 Consider a deflation technique which would compute the eigen-
values of the matrix

A= (I-Q;Q)A

in which Q; = [q1,¢92,...,q;] are previously computed Schur vectors.
What are the eigenvalues of the deflated matrix A;? Show that an
eigenvector of A; is a Schur vector for A. The advantage of this
technique is that there is no need to select shifts o;. What are the
disadvantages if any?
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P-4.7 Show that in example 4.4 any linear combination of the vectors
u1 and wq is in fact optimal.

P-4.8 Nothing was said about the left eigenvector w; of the deflated
matrix A; in Section 4.2. Assuming that the matrix A is diagonalizable
find an eigenvector w; of A; associated with the eigenvalue A\; — o.
[Hint: Express the eigenvector in the basis of the left eigenvectors
of A.] How can this be generalized to the situation where A is not
diagonalizable?

P-4.9 Assume that the basis V of the subspace K used in an or-
thogonal projection process is not orthogonal. What matrix problem
do we obtain if we translate the Galerkin conditions using this ba-
sis. Same question for the oblique projection technique, i.e., assuming
that VW does not form a bi-orthogonal pair. Ignoring the cost of
the small m-dimensional problems, how do the computational costs
compare? What if we include the cost of the orthonormalization (by
modified Gram-Schmidt) for the approach which uses orthogonal bases
(Assuming that the basis V' is obtained from orthonormalizing a set
of m basis vectors).

P-4.10 Let A be Hermitian and let 4;,%; two Ritz eigenvectors as-
sociated with two different eigenvalues A;, A; respectively. Show that
(A’Cti,ﬂj) = Ajéij.

P-4.11 Prove from the definition (4.50) that the C}’s are indeed poly-
nomials in z and that they satisfy the three-term recurrence (4.51).

NOTES AND REFERENCES. Much of the material on projection methods
presented in this chapter is based on the papers [141, 138] and the section
on deflation procedures is from [147] and some well-known results in Wilkin-
son [183]. Suggested additional reading on projection methods are Chatelin
[14] and Krasnoselskii et al. [87]. A good discussion of Chebyshev polyno-
mials in the complex plane is given in the book by Rivlin [132]. Deflation
for non Hermitian eigenvalue problems is not that much used in the liter-
ature. I found Schur-Wielandt and related deflation procedures (based on
Schur vectors rather than eigenvectors) to be essential in the design of robust
eigenvalue algorithms. A
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Subspace Iteration

Among the best known methods for solving large sparse eigen-
value problems, the subspace iteration algorithm is undoubtedly
the simplest. This method can be viewed as a block generalization
of the power method. Although the method is not competitive
with other projections methods to be covered in later chapters,
it still is one of the most important methods used in structural
engineering. It also constitutes a good illustration of the material
covered in the previous chapter.
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1. Simple Subspace Iteration

The original version of subspace iteration was introduced by Bauer
under the name of Treppeniteration (staircase iteration). Bauer’s
Treppeniteration Bauer’s method consists of starting with an ini-
tial system of m vectors forming an nxm matrix Xo = [z1, ..., 2]
and computing the matrix

X, = AFX,. (5.1)

for a certain power k. If we normalized the column vectors sepa-
rately in the same manner as for the power method, then in typical
cases each of these vectors will converge to the same eigenvector
associated with the dominant eigenvalue. Thus the system X will
progressively loose its linear independence. The idea of Bauer’s
method is to reestablish linear independence for these vectors by
a process such as the LR or the QR factorization. Thus, if we use
the more common QR option, we get the following algorithm.

ALGORITHM 5.1 Simple Subspace Iteration
1. Start: Choose an initial system of vectors Xo = [x1, ..., Zp]-
2. Iterate: Until convergence do,

(a) Compute Xy, := AXj_4

(b) Compute the QR factorization Xy = QR of X, and
set Xy := Q.

This algorithm can be viewed as a direct generalization of
the power method seen in the previous Chapter. Step 2-(b) is a
normalization process that is much similar to the normalization
used in the power method, and just as for the power method
there are many possible normalizations that can be used. An
important observation is that the subspace spanned by the vectors
X}, is the same as that spanned by A¥X;. Since the cost of 2-(b)
can be high, it is natural to orthonormalize as infrequently as
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possible, i.e. to perform several steps at once before performing
an orthogonalization. This leads to the following modification.

ALGORITHM 5.2 Multiple Step Subspace Iteration

1. Start: Choose an initial system of vectors X = [z, ..., ZTy).
Choose an iteration parameter iter.

2. Iterate: Until convergence do:

(a) Compute 7 := A" X.
(b) Orthonormalize Z. Copy resulting matrix onto X.

(c) Select a new iter.

We would like to make a few comments concerning the choice
of the parameter iter. The best iter will depend on the conver-
gence rate. If iter is too large then the vectors of Z in 2-(a)
may become nearly linear dependent and the orthogonalization
in 2-(b) may cause some difficulties. Typically an estimation on
the speed of convergence is used to determine ¢ter. Then iter is
defined in such a way that, for example, the fastest converging
vector, which is the first one, will have converged to within a cer-
tain factor, e.g., the square root of the machine epsilon, i.e., the
largest number e that causes rounding to yield 1 +€¢ == 1 on a
given computer.

Under a few assumptions the column vectors of X, will con-
verge “in direction” to the Schur vectors associated with the m
dominant eigenvalues Aq,..., \,. To formalize this peculiar no-
tion of convergence, a form of which was seen in the context of
the power method, we will say that a sequence of vectors x; con-
verges essentially to a vector x if there exists a sequence of signs
/% such that the sequence e x;, converges to .

Theorem 5.1 Let \q,..., A\, be the m dominant eigenvalues of
A labeled in decreasing order of magnitude and assume that |X\;| >
Aiv1],1 < i < m. Let Q = [q1,G2,---,Gm] be the Schur vectors
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associated with X;,j = 1,...,m and P; be the spectral projector
associated with the eigenvalues \q, ..., \;. Assume that
rank (P[z1, xo,...,x;)) =14, for i=1,2,...,m.

Then the i-th column of X converges essentially to q;, for i =
1,2,---,m.

Proof. Let the initial system X, be decomposed as

where W is an n X (n — m) matrix whose column vectors form
some basis of the invariant basis (I — P,,)C" and G is a certain
(n —m) x m matrix. We know that there exists an m x m upper
triangular matrix Ry and an (n —m) x (n — m) matrix Ry such
that

AQ=QR,, AW =WR,. (5.3)

The column vectors of X are obtained by orthonormalizing the
system 7, = A¥X,. By assumption, the system of column vectors
P,, Xy is nonsingular and therefore (G; is nonsingular. Applying
(5.3) we get

AFXy = AF[QG, + WGy
= QRIG,+WRSG,
= [Q+WR:G,GT'RTMRN Gy

The term Ej, = W REG,GT' R7" tends to zero because the spectral
radius of Ry ! is equal to 1/|)\,,| while that of Ry is [An41|. Hence,

AFX,G Y = [Q + EyRY

with limy .o Er = 0. Using the QR decomposition of the matrix
Q + Eka
Q-+ B = QMR
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we obtain

AFX,GTt = QW RWRE,

Since E}, converges to zero, it is clear that R*) converges to the
identity matrix while Q) converges to @, and because the QR
decomposition of a matrix is unique up to scaling constants, we
have established that the Q matrix in the QR decomposition of
the matrix A*X,GT" converges essentially to (). Notice that
the span of A*X,G7" is identical with that of Xj. As a result
the orthogonal projector P¥) onto span{X,} will converge to the
orthogonal projector P, onto span{Q}.

In what follows we denote by [X]; the matrix of the first j vec-
tor columns of X. To complete the proof, we need to show that
each column converges to the corresponding column vector of Q).
To this end we observe that the above proof extends to the case
where we consider only the first j columns of X, i.e., the j first
columns of X, converge to a matrix that spans the same subspace
as [Q];. In other words, if we let P; be the orthogonal projector
on span{[Q];} and PJ(-k) the orthogonal projector on span{[Xy|;}
then we have P](k) — Pj for j = 1,2,...,m. The proof is now
by induction. When j = 1, we have the obvious result that the
first column of X, converges essentially to ¢q;. Assume that the
columns 1 through ¢ of X} converge essentially to ¢y, ..., q. Con-
sider the last column xl(i)l of [Xk]i+1, which we express as

k k) (K k), (k k k)y (K
xz('+)1 = Pi(Jr)leJr)l = Pz'( )xz(+)1 + (Pi(+)1 - Pz'( ))xz(+)1

The first term in the right hand side is equal to zero because by
construction :UZ(-?I is orthogonal to the first ¢ columns of [Xj];11.
Hence,
k k k) (k
%(Jr)l = (Pz'(+)1 - Pz'( ))xz(+)1
and by the above convergence results on the projectors P](k) we

see that Pi(f)l — Pi(k) converges to the orthogonal projector onto
the span of the single vector ¢;;1. This is because

Pix1 —Pi = Qi+1Qg_1 - QinH = qz-+1qﬁ1 .
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Therefore we may write xgi)l = quqﬁle?ﬁek where € converges
to zero. Since the vector xl(ﬁ)l is of norm unity, its orthogonal
projection onto ¢;; will essentially converge to ¢;i1. [

The proof indicates that the convergence of each column vector
to the corresponding Schur vector is governed by the convergence
factor |A;11/X;|. In addition, we have also proved that each or-
thogonal projector PZ-(k) onto the first ¢ columns of X}, converges
under the assumptions of the theorem.

2. Subspace Iteration with Projection

In the subspace iteration with projection method the column vec-
tors obtained from the previous algorithm are not directly used as
approximations to the Schur vectors. Instead they are employed
in a Rayleigh-Ritz process to get better approximations. In fact
as was seen before, the Rayleigh-Ritz approximations are optimal
in some sense in the Hermitian case and as a result it is sensible to
use a projection process whenever possible. This algorithm with
projection is as follows.

ALGORITHM 5.3 Subspace Iteration with Projection

1. Start: Choose an initial system of vectors X = [xg, ..., Ty
and an initial iteration parameter iter.

2. Iterate: Until convergence do:

(a) Compute Z = A" X 4.
(b) Orthonormalize Z into Z.

(c) Compute B = Z"AZ and use the QR algorithm to
compute the Schur vectors Y = [y1,...,ym] of B.

(d) Compute Xpep = ZY .

(e) Test for convergence and select a new iteration param-
eter iter.
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There are many implementation details which are omitted for
the sake of clarity. Note that there is another version of the
algorithm which uses eigenvectors instead of Schur vectors (in
Step 2-(c)). These two versions are obviously equivalent when A
is Hermitian.

Let Si be the subspace spanned by X; and let us denote by
Py the orthogonal projector onto the subspace Si. Assume that
the eigenvalues are ordered in decreasing order of magnitude and
that,

Al 2 Pl 2 Pl = Al > st = - 2 [l

Again u; denotes an eigenvector of A of norm unity associated
with )\;. The spectral projector associated with the invariant sub-
space associated with Ay,..., A\, will be denoted by P. We will
now prove the following theorem.

Theorem 5.2 Let Sy = span{xi,2s,...,zn} and assume that
So is such that the vectors {Px;}i—1,. m are linearly independent.
Then for each eigenvector u; of A, i = 1,...,m, there exists a

unique vector s; in the subspace Sy such that Ps; = u;. Moreover,
the following inequality s satisfied

k
Am
1T = Pe)usls < lus — sil (\ i +) (5.4)

Ai

where € tends to zero as k tends to infinity.

Proof. By their assumed linear independence, the vectors Px;,
form a basis of the invariant subspace PC™ and so the vector u;,
which is a member of this subspace, can be written as

m m
u; =Y _n;Prj=P> njz; = Ps;.
im1 =1

The vector s; is such that

$; = u; + w, (5.5)
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where w = (I — P)s;. Next consider the vector y of Sy defined by
y = (5)FAFs;. We have from (5.5) that

1 k
Y — u; = (—) AF (5.6)
Ai
Denoting by W the invariant subspace corresponding to the eigen-
values A\p,11, ..., Ap, and noticing that w is in W, we clearly have
(L) 1w
—U; = | — w.
Y N 124
Hence,
1 k
Jus =yl < || [5-Aw] | ol .7
i 2
Since the eigenvalues of Ay are Ayq1, A2, ..., A, the spectral

radius of [/\%,Am/] is simply |A;m11/Ai| and from Corollary 1.1 of
Chapter I, we have,
1 k A
H [_AW] = [ )\+1
9 i
where ¢, tends to zero as k — oo. Using the fact that

k
)\i + Ek] 5 (58)

17 = Pe)uille = min ly = il

together with inequality (5.7) and equality (5.8) yields the desired
result (5.4). |

We can be a little more specific about the sequence ¢, of the
theorem by using the inequality

I1B*|l2 < ap® k", (5.9)

where B is any matrix, p its spectral radius, 7 the dimension of
its largest Jordan block, and o some constant independent on k,
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see Exercise P-5.6 as well as Householder’s book [73]. Without
loss of generality we assume that o > 1.

Initially, consider the case where A is diagonalizable. Then
n =1, and by replacing (5.9) in (5.8) we observe that (5.4) sim-
plifies into
)‘m—i—l g

1T = Pe)uillz < elfu; = sifl2 | =

(5.10)

Still in the diagonalizable case, it is possible to get a more explicit
result by expanding the vector s; in the eigenbasis of A as

n
S; = u; + Z fj’LLj.

i=m+1

Letting 5 = Y"1 |€;], we can reproduce the proof of the above
theorem to obtain

k
>\m+1

Ai

(1 = Pr)uill2 < af (5.11)

When A is not diagonalizable, then from comparing (5.9) and
(5.8) we can bound ¢ from above as follows:
>\m+1

e < (al/kk(nfl)/k —1)

i

which confirms that €, tends to zero as k tends to infinity.

Finally, concerning the assumptions of the theorem, it can be
easily seen that the condition that {Pz;};—;, , form an indepen-
dent system of vectors is equivalent to the condition that

det[U" Sy] # 0,

in which U is any basis of the invariant subspace PC". This con-
dition constitutes a generalization of a similar condition required
for the convergence of the power method.
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3. Practical Implementations

There are a number of implementation details that enhance the
performance of the simple methods described above. The first of
these is the use of locking, a form of deflation, which exploits the
inequal convergence rates of the different eigenvectors. In addi-
tion, the method is rarely used without some form of acceleration.
Similarly to the power method the simplest form of acceleration,
is to shift the matrix to optimize the convergence rate for the
eigenvalue being computed. However, there are more elaborate
techniques which will be briefly discussed later.

3.1. Locking

Because of the different rates of convergence of each of the ap-
proximate eigenvalues computed by the subspace iteration, it is
a common practice to extract them one at a time and perform a
form of deflation. Thus, as soon as the first eigenvector has con-
verged there is no need to continue to multiply it by A in the sub-
sequent iterations. Indeed we can freeze this vector and work only
with the vectors ¢s, ..., ...q,. However, we will still need to per-
form the subsequent orthogonalizations with respect to the frozen
vector ¢; whenever such orthogonalizations are needed. The term
used for this strategy is locking . It was introduced by Jennings
and Stewart [78]. Note that acceleration techniques and other im-
provements to the basic subspace iteration desribed in Section 3
can easily be combined with locking.

The following algorithm describes a practical subspace iter-
ation with deflation (locking) for computing the nev dominant
eigenvalues.

ALGORITHM 5.4 Subspace Iteration with Projection and
Deflation

1. Start: Choose an initial system of vectors X := [xg, ..., Tp]
and an initial iteration parameter iter. Set j := 1.
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2. Eigenvalue loop: While 7 < nev do:

(a) Compute 7 = [q1,q2, -+, qj—1, A" X] .

(b) Orthonormalize the column vectors of Z (starting at
column j) into Z.

(c) Update B = Z"AZ and compute the Schur vectors

Y = [yj,...,ym] of B associated with the eigenvalues
Ny ooy A
(d) Test the eigenvalues A;,...,\, for convergence. Let

teonw the number of newly converged eigenvalues. Ap-
pend the iy, corresponding Schur vectors to () =

[q1, .y gj—1] and set j := j + icony-
(e) Compute X := Z[y;,Yjs1,- - Ym]-

(f) Compute a new iteration parameter iter.

Example 5.1 Consider the matrix Mark(10) described in Chapter
IT and used in the test examples of Chapter IV. We tested a version
of the algorithm just described to compute the three dominant eigen-
values of Mark(10). In this test we took m = 10 and started with an
initial set of vectors obtained from orthogonalizing v, Av, ..., A™v, in
which v is a random vector. Table 5.1 shows the results. Each hori-
zontal line separates an outer loop of the algorithm (corresponding to
step (2) in algorithm 5.4). Thus, the algorithm starts with iter = 5
and in the first iteration (requiring 63 matrix-vector products) no new
eigenvalue has converged. We will need three more outer iterations
(requiring each 113 matrix-vector products) to achieve convergence
for the two dominant eigenvalues —1,1. Another outer iteration is
needed to compute the third eigenvalue. Note that each projection
costs 13 additional matrix by vector products, 10 for computing the
C matrix and 3 for the residual vectors.
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Mat-vec’s Re(N) Sm(A) | Res. Norm

63 | 0.1000349211D+01 0.0 0.820D-02
-0.9981891280D+4-00 0.0 0.953D-02
-0.9325298611D+-00 0.0 0.810D-02
176 | -0.1000012613D+01 0.0 0.140D-03
0.9999994313D+-00 0.0 0.668D-04
0.9371856730D+-00 0.0 0.322D-03
289 | -0.1000000294D+-01 0.0 0.335D-05
0.1000000164D+-01 0.0 0.178D-05
0.9371499768D4-00 0.0 0.177D-04
402 | -0.1000000001D+-01 0.0 0.484D-07
0.1000000001D+-01 0.0 0.447D-07
0.9371501017D+4-00 0.0 0.102D-05
495 | -0.1000000001D+-01 0.0 0.482D-07
0.1000000000D+-01 0.0 0.446D-07
0.9371501543D+-00 0.0 0.252D-07

Table 5.1 Convergence of subspace iteration with pro-

jection for computing the three dominant eigenvalues
of A = Mark(10).

3.2. Linear Shifts

Similarly to the power method, there are advantages in working
with the shifted matrix A — o[ instead of A, where o is a carefully
chosen shift. In fact since the eigenvalues are computed one at a
time, the situation is very similar to that of the power method.
Thus, when the spectrum is real, and the eigenvalues are ordered
decreasingly, the best possible o is

1

g = 5()\m+1 + )\n)

which will put the middle of the unwanted part of the spectrum
at the origin. Note that when deflation is used this is independent
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of the eigenvalue being computed. In addition, we note one im-
portant difference with the power method, namely that eigenvalue
estimates are now readily available. In fact, it is common practice
to take m > newv, the number of eigenvalues to be computed, in
order to be able to obtain valuable estimates dynamically. These
estimates can be used in various ways to accelerate convergence,
such as when selecting shifts as indicated above, or when using
some of the more sophisticated preconditioning techniques men-
tioned in the next section.

3.3. Preconditionings

Preconditioning is especially important for subspace iteration,
since the unpreconditioned iteration may be unacceptably slow
in some cases. Although we will cover preconditioning in more
detail in Chapter VIII, we would like to mention here the main
ideas used to precondition the subspace iteration.

e Shift-and-invert. This consists of working with the matrix
(A —oI)~! instead of A. The eigenvalues near o will con-
verge fast.

e Polynomial acceleration. The standard method used is to
replace the power A" in the usual subspace iteration algo-
rithm by a polynomial T,,[(A — oI)/p] in which T, is the
Chebyshev polynomial of the first kind of degree m.

With either type of preconditioning subspace iteration may
be a reasonably efficient method that has the advantage of being
easy to code and understand. Some of the methods to be seen in
the next Chapter are often preferred however, because they tend
to be more economical.
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PROBLEMS

P-5.1 In Bauer’s original Treppeniteration, the linear independence
of the vectors in A* X are preserved by performing its LU decompo-
sition. Thus,

X =A*X X =LU,, X :=L,

in which L is an n X m matrix with its upper m X m corner being
a unit lower triangular matrix, and U is an m X m upper triangular
matrix. Extend the main convergence theorem of the corresponding
algorithm, for this case.

P-5.2 Assume that the matrix A is real and the eigenvalues A, A1
forms a complex conjugate pair. If subspace iteration with deflation
(Algorithm 5.4) is used, there will be a difficulty when computing the
last eigenvalue. Provide a few possible modifications to the algorithm
to cope with this case.

P-5.3 Write a modification of Algorithm 5.4 which incorporates a
dynamic shifting strategy. Assume that the eigenvalues are real and
consider both the case where the rightmost or the leftmost eigenvalues
are wanted.

P-5.4 Let A be a matrix whose eigenvalues are real and assume that
the subspace iteration algorithm (with projection) is used to compute
some of the eigenvalues with largest real parts of A. The question
addressed here is how to get the best possible iteration parameter
iter. We would like to choose iter in such a way that in the worst case,
the vectors of X will loose a factor of /e in their linear dependence,
in which € is the machine accuracy. How can we estimate such an
iteration parameter iter from quantities derived from the algorithm?
You may assume that m is sufficiently large compared with nev (how
large should it be?).

P-5.5 Generalize the result of the previous exercise to the case where
the eigenvalues are not necessarily real.

P-5.6 Using the Jordan Canonical form, show that for any matrix
B,
1B 1> < aphk?", (5.12)
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where p is the spectral radius of B, 1 the dimension of its largest
Jordan block, and a some constant.

P-5.7 Implement a subspace iteration with projection to compute the
eigenvalues with largest modulus of a large sparse matrix. Implement
locking and linear shifts.

NOTES AND REFERENCES. An early reference on Bauer’s Treppeniteration,
in addition to the original paper by Bauer [5], is Householder’s book [73]. See
also the paper by Rutishauser [137] and by Clint and Jennings [21] as well as
the book by Bathé and Wilson [4] which all specialize to symmetric matrices.
A computer code for the symmetric real case was published in Wilkinson and
Reinsch’s handbook [184] but unlike most other codes in the handbook, never
became part of the Eispack library. Later, some work was done to develop
computer codes for the non-Hermitian case. Thus, a ‘lop-sided’ version of
Bauer’s treppeniteration based on orthogonal projection method rather than
oblique projection was introduced by Jennings and Stewart [77] and a com-
puter code was also made available [78]. However, the corresponding method
did not incorporate Chebyshev acceleration, which turned out to be so useful
in the Hermitian case. Chebyshev acceleration was later incorporated in the
paper by Saad in [143] and some theory was proposed in [141]. G.W. Stewart
[169, 170] initiated the idea of using Schur vectors as opposed to eigenvec-
tors in subspace iteration. The motivation is that Schur vectors are easier to
handle numerically but there has not been any comparisons in the literature
between the two variants. A convergence theory of Subspace Iteration was
proposed in [169]. The convergence results of Section 2 follow the paper [141]
and a modification due to Chatelin (private communication). There are no
public domain codes available as yet implementing the accelerated subspace
iteration. Jenning and Stewart’s LOPSI code is available in the Transactions
for Mathematical Software and can be obtained from Netlib. Quite recently, a
Chebyshev accelerated version of subspace iteration has been made available
by Rutherford Appleton laboratories [40]. A
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Chapter VI

Krylov Subspace Methods

In this chapter we will examine one of the most important classes
of methods available for computing eigenvalues and eigenvectors
of large matrices. These techniques are based on projections
methods, both orthogonal and oblique, onto Krylov subpaces, i.e.,
subspaces spanned by the iterates of the simple power method.
What may appear to be a trivial extension of a very slow algo-
rithm turns out to be one of the most successful methods for ex-
tracting eigenvalues of large matrices, especially in the Hermitian
case.
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1. Krylov Subspaces

An important class of techniques known as Krylov subspace meth-
ods extracts approximations from a subspace of the form

K,n = span {v, Av, A%, ... A™ o} (6.1)

referred to as a Krylov subspace. If there is a possibility of ambi-
guity, Ky, is denoted by K, (A, v). In contrast with subspace iter-
ation, the dimension of the subspace of approximants increases by
one at each step of the approximation process. A few well-known
of these Krylov subspace methods are:

(1) The Hermitian Lanczos algorithm;
(2) Arnoldi’s method and its variations;
(3) The nonhermitian Lanczos algorithm.

There are also block extensions of each of these methods termed
Block Krylov Subspace methods, which we will discuss only briefly.
Arnoldi’s method and Lanczos’ method are orthogonal projec-
tion methods while the nonsymmetric Lanczos algorithm is an
oblique projection method. Before we pursue with the analysis of
these methods, we would like to emphasize an important distinc-
tion between implementation of a method and the method itself .
There are several distinct implementations of Arnoldi’s method,
which are all mathematically equivalent. For example the arti-
cles [42, 139, 177] all propose some different versions of the same
mathematical process.

In this section we start by establishing a few elementary prop-
erties of Krylov subspaces, many of which need no proof. Recall
that the minimal polynomial of a vector v is the nonzero monic
polynomial p of lowest degree such that p(A)v = 0.

Proposition 6.1 The Krylov subspace K, is the subspace of all
vectors in C" which can be written as © = p(A)v, where p is a
polynomial of degree not exceeding m — 1.



KRYLOV SUBSPACE METHODS 169

Proposition 6.2 Let p be the degree of the minimal polynomial
of v. Then IC, is invariant under A and KC,, = K, for allm > p.

The degree of the minimal polynomial of v is often referred to as
the grade of v with respect to A. Clearly, the grade of v does not
exceed n.

Proposition 6.3 The Krylov subspace Ky, is of dimension m if
and only if the degree of the minimal polynomial of v with respect
to A is larger than m — 1.

Proof. The vectors v, Av,...A™ v form a basis of K,, if and
only if for any complex m—tuple «;,7 = 0,...,m — 1, where at
least one «; is nonzero, the linear combination 37" a; A'v is
nonzero. This condition is equivalent to the condition that there
be no polynomial of degree < m — 1 for which p(A)v = 0. This
proves the result. [

Proposition 6.4 Let (),, be any projector onto K,,, and let A,, be
the section of A to K.y, that is, Ap, = QmAk,,. Then for any poly-
nomial q of degree not exceeding m —1, we have q(A)v = q(An)v,
and for any polynomial of degree < m, we have Quq(A)v =
q(Anm)v.

Proof. We will first prove that ¢(A)v = ¢(A,,)v for any poly-
nomial ¢ of degree < m — 1. It suffices to prove the property for
the monic polynomials ¢;(t) = ¢/, i« = 0,...m — 1. The proof
is by induction. The property is clearly true for the polynomial
qo(t) = 1. Assume that it is true for ¢;(t) = t":

gi(A)v = q;(Ap)v.
Multiplying the above equation by A on both sides we get

¢iv1(A)v = Agi(Am)v.
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If 24+ 1 < m — 1 the vector on the left hand-side belongs to K,
and therefore if we multiply the above equation on both sides by
Qm we get

Gi+1(A)v = QuAgi(Am)v.
Looking at the right hand side we observe that ¢;(A,,)v belongs
to KC,,. Hence

Qi+1(A)U = QmA\K:mQZ(Am)U - Qi+1(Am)'U7

which proves that the property is true for ¢ + 1 provided ¢ +
1 < m — 1. For the case © + 1 = m it remains only to show
that Qmgm(A)v = gm(Am)v, which follows from ¢, (A)v =
Gm-—1(Am)v by simply multiplying both sides by Q,,A. ]

An interesting characterization of orthogonal Krylov projec-
tion methods can be formulated in terms of the characteristic
polynomial of the approximate problem. In the orthogonal pro-
jection case, we define the characteristic polynomial of the ap-
proximate problem as that of the matrix V22 AV, where V}, is a
matrix whose column vectors form an orthonormal basis of /C,,.
It is a simple exercise to show that this definition is independent
of the choice of V,,, the basis of the Krylov subspace.

Theorem 6.1 Let p,, be the characteristic polynomial of the ap-
proximate problem resulting from an orthogonal projection method
onto the Krylov subspace K,,. Then p, minimizes the norm
lp(A)vlla over all monic polynomials p of degree m.

Proof. @ We denote by P,, the orthogonal projector onto K,
and A,, the corresponding section of A. By Cayley Hamilton’s
theorem we have p,,(4,,) = 0 and therefore

(P (Ao, w) =0, Yw e K, . (6.2)

By the previous proposition p,, (A, )v = Pppm(A)v. Hence (6.2)
becomes

(Pubm(A)v,w) =0, Y w € Ky,
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or, since orthogonal projectors are self adjoint,
(Pm(A)v, Pryw) =0 = (pm(A)v,w) YV w € Ky,
which is equivalent to
(P(A)v, ATv) =0, 7=0,...m — 1.
Writing p,, (t) = t™ —q(t), where ¢ is of degree < m—1, we obtain
(A™y — q(A)v, Alv) =0, j=0,...m— 1.

In the above system of equations we recognize the normal equa-
tions for minimizing the Euclidean norm of A™v — s(A)wv over all
polynomials s of degree < m — 1. The proof is complete. [

The above characteristic property is not intended to be used
for computational purposes. It is useful for establishing mathe-
matical equivalences between seemingly different methods. Thus,
a method developed by Erdelyi in 1965 [42] is based on precisely
minimizing ||p(A)v||z over monic polynomials of some degree and
is therefore mathematically equivalent to any orthogonal projec-
tion method on a Krylov subspace. Another such method was
proposed by Manteuffel [99, 100] for the purpose of estimating
acceleration parameters when solving linear systems by Cheby-
shev method. His method named the Generalized Power Method,
was essentially Erdelyi’s method with a special initial vector.

An important point is that this characteristic property seems
to be the only known optimality property that is satisfied by the
approximation process in the nonsymmetric case. Other optimal-
ity properties, such as the mini-max theorem which are funda-
mental both in theory and in practice for symmetric problems
are no longer valid. This results in some significant difficulties
in understanding and analyzing these methods for nonsymmetric
eigenvalue problems.
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2. Arnoldi’s Method

Arnoldi’s method is an orthogonal projection method onto /C,, for
general non-Hermitian matrices. The procedure was introduced in
1951 as a means of reducing a dense matrix into Hessenberg form.
Arnoldi introduced this method precisely in this manner and he
hinted that the process could give good approximations to some
eigenvalues if stopped before completion. It was later discovered
that this strategy lead to a good technique for approximating
eigenvalues of large sparse matrices. We first describe the method
without much regard to rounding errors, and then give a few
implementation details.

2.1. The Basic Algorithm

The procedure introduced by Arnoldi in 1951 starts by building an
orthogonal basis of the Krylov subspace KC,,. In exact arithmetic,
one variant of the algorithm is as follows.

ALGORITHM 6.1 Arnoldi

1. Start: Choose a vector v, of norm 1.

2. Iterate: for j = 1,2,..., m compute:
hij = (AU]',UZ'), i:1,2,...,j, (63)
J
w; = A’Uj — Z hijvia (64)
=1
hj+1,j = ||’LU]||2 s if hj+1,j =0 StOp (65
visr = wi/hjgr . (6.6

The algorithm will stop if the vector w; computed in (6.4)
vanishes. We will come back to this case shortly. We now prove
a few simple but important properties of the algorithm.

Proposition 6.5 The vectors vy, vs,. .., Uy form an orthonormal
basis of the subspace K,, = span{vy, Avy, ..., A"y}
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Proof. The vectors v;,% = 1,2,...m are orthonormal by con-
struction. That they span IC,, follows from the fact that each
vector v; is of the form ¢;_;(A)v; where ¢;_; is a polynomial of
degree j — 1. This can be shown by induction on j as follows.
Clearly the result is true when j = 1, since v; = ¢o(A)v; with
qo(t) = 1. Assume that the result is true for all integers < j and
consider v;;;. We have

J J
hj+1’Uj+1 = A’Uj — Z hz’j'Uz' = qu',l(A)’Ul — Z hijqi,l(A)Ul (67)
i=1 1=1

which shows that v, can be expressed as ¢;(A)v; where g; is of
degree j and completes the proof. [ ]

Proposition 6.6 Denote by V,, the n x m matrix with column
vectors vy, ..., Um and by H,, the m x m Hessenberg matriz whose
nonzero entries are defined by the algorithm. Then the following
relations hold:

AV = ViHp + hipt Uil (6.
Vn?AVm = H, . (6. )

© oo
~—"

Proof. The relation (6.8) follows from the following equality
which is readily derived from (6.6) and (6.4):

Jj+1

AU]' = Z hij'Uz'a ] = 1, 2, e, (610)
=1

Relation (6.9) follows by multiplying both sides of (6.8) by V2
and making use of the orthonormality of {vy, ..., v,}. u

The situation is illustrated in Figure 6.1.
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Hy,

A V., |=| V., + wyel

Figure 6.1 The action of A on V,, gives V,, H,, plus
a rank one matrix.

As was noted earlier the algorithm may break down in case
the norm of w; vanishes at a certain step j. In this situation the
vector v;4; cannot be computed and the algorithm stops. There
remains to determine the conditions under which this situation
occurs.

Proposition 6.7 Arnoldi’s algorithm breaks down at step j (i.e.,
wj =0 in (6.4)) if and only if the minimal polynomial of vy is of
degree j. Moreover, in this case the subspace K; is invariant and
the approrimate eigenvalues and eigenvectors are exact.

Proof. If the degree of the minimal polynomial is j, then w;
must be equal to zero. Indeed, otherwise v;,; can be defined and
as a result ;1 would be of dimension j+1, and from Proposition
6.3, this would mean that ;1 > j + 1, which is not true. To prove
the converse, assume that w; = 0. Then the degree ;o of the
minimal polynomial of v; is such that ;4 < j. Moreover, we cannot
have ;1 < j otherwise by the previous proof the vector w, would
be zero and the algorithm would have stopped at the earlier step
number p. The rest of the result follows from Proposition 4.3 seen
in Chapter IV. ]
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The approximate eigenvalues )\Em) provided by the projection

process onto K, are the eigenvalues of the Hessenberg matrix H,,.
The Ritz approximate eigenvector associated with )\im) is defined
by ™ = V,,y™ where 3™ is an eigenvector associated with
the eigenvalue )\Em). A number of the Ritz eigenvalues, typically
a small fraction of m, will usually constitute good approximations
of corresponding eigenvalues )\; of A and the quality of the ap-
proximation will usually improve as m increases. We will examine
these ‘convergence’ properties in detail in later sections. The orig-
inal algorithm consists of increasing m until all desired eigenvalues
of A are found. This is costly both in terms of computation and
storage. For storage, we need to keep m vectors of length n plus
an m x m Hessenberg matrix, a total of approximately nm-+m?/2.
Considering the computational cost of the j-th step, we need to
multiply v; by A, at the cost of 2 x Nz, where Nz is number of
nonzero elements in A, and then orthogonalize the result against
jJ vectors at the cost of 4(j 4+ 1)n, which increases with the step
number j.

On the practical side it is crucial to be able to estimate the
residual norm inexpensively as the algorithm progresses. This
turns out to be quite easy to do for Arnoldi’s method and, in fact,
for all the Krylov subspace methods described in this chapter.
The result is given in the next proposition.

(m)

Proposition 6.8 Let y

with the eigenvalue )\Em) and u

tor u{™ = me(m). Then,

) )

be an eigenvector of H,, associated
(m)

. the Ritz approximate eigenvec-

(A— AEm)I)uﬁ-m) = Nmt1,m eﬁyz(m)vmﬂ
and, therefore,

1A =A™ D™ |y = hopgrmleflyi™]
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Proof. This follows from multiplying both sides of (6.8) by ygm):
AmeZ(m) = VmHmyEm) + hntim ef,{y,(m)va

= )‘z(m)vmyi(m) + hm+1,mer}r€yz§m)vm+l .
Hence,

Avmyz(m) - )‘Em)vmy(m) = hm+1,m t‘ﬂyfm) Um+1 -

1

In simpler terms, the proposition states that the residual norm
is equal to the last component of the eigenvector y(m) multiplied

i
by lpm41m- In practice, the residual norms, although not always
indicative of actual errors, are quite helpful in deriving stopping
procedures.

2.2. Practical Implementations

The description of the Arnoldi process given earlier assumed exact
arithmetic. In reality, much is to be gained by using the Modified
Gram-Schmidt or the Householder algorithm in place of the stan-
dard Gram-Schmidt algorithm. With the modified Gram-Schmidt
alternative the algorithm takes the following form.

ALGORITHM 6.2 Arnoldi - Modified Gram-Schmidt
1. Start. Choose a vector v; of norm 1.
2. Iterate. For j =1,2,...,m do:
(a) w = Av;;
(b) Fori=1,2,...,j do:

hz] = ('UJ, Ui)a

wi=w — hijvi;



KRYLOV SUBSPACE METHODS 177

(¢) hjrrg = llwllz ;
(d) vjs1 =w/hji1; -

There is no difference in exact arithmetic between this algo-
rithm and Algorithm 6.1. Although this formulation is numer-
ically superior to the standard Gram Schmidt formulation, we
do not mean to imply that the above Modified Gram-Schmidt
is sufficient for all cases. In fact there are two alternatives that
are implemented to guard against large cancellations during the
orthogonalization process.

The first alternative is to resort to double orthogonalization.
Whenever the final vector obtained at the end of the second loop
in the above algorithm has been computed, a test is performed to
compare its norm with the norm of the initial w (which is || Av;||2).
If the reduction falls below a certain threshold, an indication that
sever cancellation might have occurred, a second orthogonaliza-
tion is made. It is known from a result by Kahan that additional
orthogonalizations are superfluous (see for example Parlett [118]).

The second alternative is to resort to a different technique
altogether. In fact one of the most reliable orthogonalization
techniques, from the numerical point of view, is the Householder
algorithm. This has been implemented for the Arnoldi process
by Walker [181]. We do not describe the Householder algorithm
here but we would like to compare the cost of each of the three
versions.

In the table shown below, GS stands for Gram-Schmidt, MGS
for Modified Gram-Schmidt, MGSR for Modified Gram-Schmidt
with Reorthogonalization, and HO for Householder.

GS MGS MGSR HO
Flops m?n m?n 2m?n 2m?n — %m?’
Storage | (m+1)n | (m+1)n | (m+1)n | (m+ 1)n — 2m?

A few comments are in order. First, the number of operations
shown for MGSR are for the worst case situation when a second
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orthogonalization is needed every time. This is unlikely to take
place and in practice the actual number of operations is much
more likely to be close to that of the simple MGS. Concerning
storage, the little gain in storage requirement in the Householder
version comes from the fact that the Householder transformation
requires vectors whose length diminishes by 1 at every step of
the process. However, this difference is negligible relative to the
whole storage requirement given that usually m < n. More-
over, the implementation to take advantage of this little gain may
become rather complicated. In spite of this we do recommend
implementing Householder orthogonalization for developing gen-
eral purpose reliable software packages. A little additional cost in
arithmetic may be more than offset by the gains in robustness in
these conditions.

Example 6.1 Consider the matrix Mark(10) used in the examples
in the previous two Chapters. Table 6.1 shows the convergence of the
rightmost eigenvalue obtained by Arnoldi’s method.

m Re(N) Sm(A) | Res. Norm
5 | 0.9027159373 0.0 0.316D+-00
10 | 0.9987435899 0.0 | 0.246D-01
15 | 0.9993848488 0.0 | 0.689D-02
20 | 0.9999863880 0.0 0.160D-03
25 | 1.000000089 0.0 | 0.135D-05
30 | 0.9999999991 0.0 0.831D-08

Table 6.1 Convergence of rightmost eigenvalue computed
from a simple Arnoldi algorithm for A = Mark(10).

Comparing the results shown in Table 6.1 with those of the examples
seen in Chapter IV, it is clear that the convergence is much faster than
the power method or the shifted power method.

As was mentioned earlier the standard implementations of
Arnoldi’s method are limited by their high storage and compu-
tational requirements as m increases. Suppose that we are inter-
ested in only one eigenvalue/eigenvector of A, namely the eigen-
value of largest real part of A. Then one way to circumvent the
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difficulty is to restart the algorithm. After a run with m Arnoldi
vectors, we compute the approximate eigenvector and use it as an
initial vector for the next run with Arnoldi’s method. This pro-
cess, which is the simplest of this kind, is iterated to convergence.

ALGORITHM 6.3 Iterative Arnoldi

1. Start: Choose an initial vector v, and a dimension m.

2. Tterate: Perform m steps of Arnoldi’s algorithm.

3. Restart: Compute the approximate eigenvector ugm) asso-

ciated with the rightmost eigenvalue AY’”. If satisfied stop,

else set v; = u\™ and goto 2.

Example 6.2 Consider the same matrix Mark(10) as above. We
now use a restarted Arnoldi procedure for computing the eigenvector
associated with the eigenvalue with algebraically largest real part. We
use m = 10.

m Re(N) Sm(A) | Res. Norm
10 | 0.9987435899D+-00 0.0 0.246D-01
20 | 0.9999523324D+-00 0.0 0.144D-02
30 | 0.1000000368D+01 0.0 0.221D-04
40 | 0.1000000025D+01 0.0 0.508D-06
50 | 0.9999999996D+00 0.0 0.138D-07

Table 6.2 Convergence of rightmost eigenvalue computed
from a restarted Arnoldi procedure for A = Mark(10).

Comparing the results of Table 6.2 with those of the previous example
indicates a loss in performance, in terms of total number of matrix-
vector products. However, the number of vectors used here is 10 as
opposed to 50, so the memory requirement is much more modest.
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2.3. Incorporation of Implicit Deflation

We now consider the following implementation which incorpo-
rates a deflation process. The previous algorithm is valid only
for the case where only one eigenvalue/eigenvector pair must be
computed. In case several such pairs must be computed, then
there are two possible options. The first, is to take v; to be a lin-
ear combination of the approximate eigenvectors when we restart.
For example, if we need to compute the p rightmost eigenvectors,
we may take

p
U1 = Z Pilli,
i=1

where the eigenvalues are numbered in decreasing order of their
real parts. The vector v; is then obtained from normalizing v;.
The simplest choice for the coefficients p; is to take p; = 1,7 =
1,...,p. There are several drawbacks to this approach, the most
important of which being that there is no easy way of choosing
the coefficients p; in a systematic manner. The result is that for
hard problems, convergence is difficult to achieve.

An alternative is to compute one eigenpair at a time and use
deflation. We can use deflation on the matrix A explicitly as
was described in Chapter IV. This entails constructing progres-
sively the first £ Schur vectors. If a previous orthogonal basis
[1,...,up_1] of the invariant subspace has already been com-
puted, then, to compute the eigenvalue \;, we work with the
matrix A — USU!, in which ¥ is a diagonal matrix.

Another implementation, which we now describe, is to work
with a single basis vy, v, ..., v, whose first vectors are the Schur
vectors that have already converged. Suppose that k£ — 1 such
vectors have converged and call them vy, vs,...,vx_1. Then we
start by choosing a vector v, which is orthogonal to vy, ....,vp_1
and of norm 1. Next we perform m —k steps of an Arnoldi process
in which orthogonality of the vector v; against all previous v;s,
including vy, ...,vx_1 is enforced. This generates an orthogonal
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basis of the subspace
span{vl,...,vk,l,vk,Avk,...,Am’kvk} . (611)

Thus, the dimension of this modified Krylov subspace is constant
and equal to m in general. A sketch of this implicit deflation
procedure combined with Arnoldi’s method is the following.

ALGORITHM 6.4 Deflated Iterative Arnoldi

A. Start: Choose an initial vector v, of norm unity. Set k := 1.
B. Eigenvalue loop:

1. Arnoldi Iteration. For j = k,k+1,...,m do:

e Compute w := Avj.
e Compute a set of j coefficients h;; so that w :=
w — >1_, hjjv; Is orthogonal to all previous v;’s,
i=1,2,....7.
e Compute hj1j = ||w||2 and vjy1 = w/hjiq .
2. Compute approximate eigenvector of A associated with
the eigenvalue )\, and its associated residual norm es-
timate py.

3. Orthonormalize this eigenvector against all previous
v;’s to get the approximate Schur vector uy and de-
fine vy, := uy.

4. If py is small enough then (accept eigenvalue):
e Compute h; = (Avg,v;) , i =1,..,k,
o Setk:=k+1,
e If k > nev then stop else goto B.

5. Else go to B-1.

Note that in the B-loop, the Schur vectors associated with
the eigenvalues Ay, ..., A\ are frozen and so is the corresponding
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upper triangular matrix corresponding to these vectors. As a new
Schur vector has converged, step B.4 computes the k-th column of
R associated with this new basis vector. In the subsequent steps,
the approximate eigenvalues are the eigenvalues of the m x m
Hessenberg matrix H,, defined in the algorithm and whose k x k
principal submatrix is upper triangular For example when m = 6
and after the second Schur vector, k£ = 2, has converged, the
matrix H,, will have the form

(6.12)

* X X *x

* % X X X
* % X X X
* K X X X x

*

Therefore in the subsequent steps, we will consider only the eigen-
values that are not associated with the 2 x 2 upper triangular
matrix.

It can be shown that, in exact arithmetic, the (n—k) x (n— k)
Hessenberg matrix in the lower (2 x 2) block is the same matrix
that would be obtained from an Arnoldi run applied to the matrix
(I — Py)A in which Py is the orthogonal projector onto the (ap-
proximate) invariant subspace that has already been computed,
see Exercise P-6.3. The above algorithm although not competitive
with the more elaborate versions that use some form of precondi-
tioning, will serve as a good model of a deflation process combined
with Arnoldi’s projection.

Example 6.3 We will use once more the test matrix Mark(10) for
illustration. Here we test our restarted and deflated Arnoldi procedure
for computing the three eigenvalues with algebraically largest real part.
We use m = 10 as in the previous example. We do not show the run
corresponding to the first eigenvalue since the data is already listed
in Table 6.2. The first column shows the eigenvalue being computed.
Thus, it takes five outer iterations to compute the first eigenvalue (see
example 6.2), 4 outer iterations to compute the second one, and finally
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8 outer iterations to get the third one. The convergence towards the
last eigenvalue is slower than for the first two. This could be attributed
to poorer separation of A3 from the other eigenvalues but also to the
fact that m has implicitly decreased from m = 10 when computing the
first eigenvalue to m = 8 when computing the third one.

Eig. | Mat-Vec’s Re(N) Sm(A) | Res. Norm

2 60 | 0.9370509474 0.0 0.870D-03
69 | 0.9371549617 0.0 0.175D-04
78 | 0.9371501442 0.0 0.313D-06
87 | 0.9371501564 0.0 0.490D-08
3 96 | 0.8112247133 0.0 0.210D-02
104 | 0.8097553450 0.0 0.538D-03
112 | 0.8096419483 0.0 0.874D-04
120 | 0.8095810281 0.0 0.181D-04
128 | 0.8095746489 0.0 0.417D-05
136 | 0.8095721868 0.0 0.753D-06
144 | 0.8095718575 0.0 0.231D-06
152 | 0.8095717167 0.0 0.444D-07

Table 6.3 Convergence of three rightmost eigenvalues com-
puted from a deflated Arnoldi procedure for A = Mark(10).

3. The Hermitian Lanczos Algorithm

The Hermitian Lanczos algorithm can be viewed as a simplifica-
tion of Arnoldi’s method for the particular case when the matrix
is Hermitian. The principle of the method is therefore the same in
that it is a projection technique on a Krylov subspace. However,
there are a number of interesting properties that will cause the
algorithm to simplify. On the theoretical side there is also much
more that can be said on the Lanczos algorithm than there is on
Arnoldi’s method.



184 CHAPTER VI

3.1. The Algorithm

To introduce the algorithm we start by making the observation
stated in the following theorem.

Theorem 6.2 Assume that Arnoldi’s method is applied to a Her-
mitian matriz A. Then the coefficients h;; generated by the algo-
rithm are real and such that

hij = 0, for 1 S 7 < ] —1 , (6]_3)
hj,j+1 = hj+1,j , 1=12,...,m. (6,14)

In other words the matriz H,, obtained from the Arnoldi process
1s real, tridiagonal, and symmetric.

Proof. The proof is an immediate consequence of the fact that
H,, = VEAV,, is a Hermitian matrix which is also a Hessen-
berg matrix by construction. Therefore, H,, must be a Hermitian
tridiagonal matrix. In addition, observe that by its definition the
scalar h;q j is real and that hj; = (Avj, v;) is also real if A is Her-
mitian. Therefore, the Hessenberg matrix H,, is a real tridiagonal
and symmetric matrix. [ ]

The standard notation used to describe the Lanczos algorithm,
is obtained by setting

Oéj = hjj;
Bi = hj;,

which leads to the following form of the Modified Gram Schmidt
variant of Arnoldi’s method, namely Algorithm 6.2.

ALGORITHM 6.5 The Lanczos Algorithm

1. Start: Choose an initial vector vy of norm unity. Set 3, =
0,v9 = 0.
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2. Iterate: for j =1,2,...,m do

wj = Av; — Bjv;_q (6.15)
aj = (wj,v)) (6.16)
wj 1= W — 0y (6.17)
Bt 1= sl (6.1)
Vi1 7= w5/ B (6.19)

An important and rather surprising property is that the above
simple algorithm guarantees, at least in exact arithmetic, that the
vectors v;,2 = 1,2,..., are orthogonal. In reality, exact orthog-
onality of these vectors is only observed at the beginning of the
process. Ultimately, the v;’s start losing their global orthogonal-
ity very rapidly. There has been much research devoted to finding
ways to either recover the orthogonality, or to at least diminish its
effects by partial or selective orthogonalization, see Parlett [118].

The major practical differences with Arnoldi’s method are that
the matrix H,, is tridiagonal and, more importantly, that we only
need to save three vectors, at least if we do not resort to any form
of reorthogonalization.

3.2. Relation with Orthogonal Polynomials

In exact arithmetic the equation (6.17) in the algorithm takes the
form

Bj+1vj41 = Avj — ajvj — Bjvj1.

This three term recurrence relation is reminiscent of the standard
three term recurrence relation of orthogonal polynomials. In fact
as we will show in this section, there is indeed a strong relationship
between the Lanczos algorithm and orthogonal polynomials. We
start by recalling that if the grade of v; is > m then the subspace
ICpn, is of dimension m and consists of all vectors of the form ¢(A)v;
with degree(q) < m—1. In this case there is even an isomorphism
between K, and P,, 1, the space of polynomials of degree <
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m — 1, which is defined by
g€ Py —z=q(A)n €KL,

Moreover, we can consider that the subspace [P,,_; is provided
with the inner product

<P, q >u= (p(A)v1, g(A)vy) (6.20)

which is indeed a nondegenerate bilinear form under the assump-
tion that m does not exceed pu, the grade of v;. Now observe that
the vectors v; are of the form

v = qze1(A)U1

and the orthogonality of the v;’s translates into the orthogonality
of the polynomials with respect to the inner product (6.20). More-
over, the Lanczos procedure is nothing but the Stieltjes algorithm
(see, for example, Gautschi [55]) for computing a sequence of or-
thogonal polynomials with respect to the inner product (6.20).
From Theorem 6.1 the characteristic polynomial of the tridiagonal
matrix produced by the Lanczos algorithm minimizes the norm
|||, over the monic polynomials. It is easy to prove by using
a well-known recurrence for determinants of tridiagonal matrix,
that the Lanczos recurrence computes the characteristic polyno-
mial of H,, times the initial vector v;. This is another way of
relating the v;’s to the orthogonal polynomials.

4. Non-Hermitian Lanczos algorithm

This is an extension of the algorithm seen in the previous section
to the non-Hermitian case. We already know of one such exten-
sion namely Arnoldi’s procedure which is an orthogonal projec-
tion method. However, the non-Hermitian Lanczos algorithm is
an oblique projection technique and is quite different in concept
from Arnoldi’s method.
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4.1. The Algorithm

The algorithm proposed by Lanczos for non-Hermitian matrices
differs from Arnoldi’s method in one essential way: instead of
building an orthogonal basis of IC,,, it builds a pair of biorthogonal
bases for the two subspaces

K (A, v1) = span{vy, Avy,..., A" o}
and
K (A" wy) = span{w;, A%wy, ..., (A" 1w}
The algorithm to achieve this is as follows.

ALGORITHM 6.6 The non-Hermitian Lanczos Algorithm

1. Start: Choose two vectors vy, w; such that (v, w;) = 1. Set
B =0,wg = vy = 0.

2. Iterate: for j =1,2,...,m do

a; = (Avj, w;) (6.21)
Vi1 = Av; — ;v — Bv; (6.22)
Wi = AMw; — ajw; — Gw; (6.23)
0j1 = (D41, jp1)] ' (6.24)
Bit1 = (011, Wj41) /0541 (6.25)
Wjt1 = wj-l-l/m ( )

(6.27)

Vi1 = Vi1 /i1

We should point out that there is an infinity of ways of choos-
ing the scalars d;.1, 311 in (6.24)—(6.25). These two parameters
are scaling factors for the two vectors v;;; and w;;; and can be
selected in any manner to ensure that (vjiq,wj;1) = 1. As a
result of (6.26), (6.27) all that is needed is to choose two scalars
Bj+1,0;41 that satisfy the equality

0j+10j11 = (Dj41, Wjt1) (6.28)
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The choice made in the above algorithm attempts to scale the two
vectors so that they are divided by two scalars having the same
modulus. Thus, if initially v; and w; have the same norm, all of
the subsequent v;’s will have the same norms as the w;’s. One can
scale both vectors by their 2-norms, so that the inner product of
v; and w; is no longer equal to one. A modified algorithm can
be written with these constraint. In this situation a generalized
eigenvalue problem 7;,2 = AD,,,z must be solved to compute the
Ritz values where D,, is a diagonal matrix, whose entries are the
inner products (v;, w;). The modified algorithm is the subject of
Exercise P-6.9.

In what follows we will place ourselves in the situation where
the pair of scalars 6,41, 841 is any pair that satisfies the relation
(6.28), instead of restricting ourselves to the particular case de-
fined by (6.24) — (6.25). A consequence is that §; can be complex
and in fact the formula defining w;;; in (6.23) should then be
modified to

121]'+1 = AHU]]' - @jw]' — 5jwj_1 .
We will denote by T}, the tridiagonal matrix

03] 52
52 %) 53

6m—1 Op—1 Bm

Om O

Note that in the particular case where A is real as well as the
initial vectors vy, wy, and if (6.24) — (6.25) are used then the §;’s
are real positive and 3; = 30;.

Our first observation from the algorithm is that the vectors v;
belong to K,,(A,vy) while the w; ’s are in K,,(A7, wy). In fact
we can show the following proposition.

Proposition 6.9 If the algorithm does not break down before step
m then the vectors v;,i =1,...,m, and wj,j = 1,...,m, form a
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biorthogonal system, i.e.,
(vj,wz-)zéz-j 1§Z,j§m

Moreover, {v;}iz12,..m is a basis of Kn(A,v1) and {w;}i=12,.m
is a basis of Ky (A" wy) and we have the relations,

AV = Viu Ty + S 1V 1€ (6.29)
AW, = W TH + B 1w el (6.30)
WHAV,, =T, . (6.31)

Proof. The biorthogonality of the vectors v;, w; will be shown
by induction. By assumption (vy,w;) = 1. Assume now that the
vectors vy, ...v; and wy, ... w; are biorthogonal, and let us estab-
lish that the vectors vy, ...v;41 and wy, ... w;4; are biorthogonal.

We show first that (vjiq, w;) = 0 for i < j. When i = j we
have

(vj41,w5) = 651 [(Avj, wy) — aj(vg, wy) = Bj(vj—1, w;)]

The last inner product in the above expression vanishes by the
induction hypothesis. The two other terms cancel each other by
the definition of «; and the fact that (v;, w;) = 1. Consider now

(0541, wj1) = 054 [(Avy, wj—1) — aj(vy, wj-1) = B(vj-1, wj-1)] -

Again from the induction hypothesis the middle term in the right
hand side vanishes. The first term can be rewritten as

(Avj,wja) = (vj, AMwj 1) .
= (Uj, ﬁjwj + dj_le_l + (Sj_le_g)
= Bj(vj,wy) + a1 (vj, wi—1) + 01 (vj, wj—2)
B

and as a result,

(vj+1, wj—1) = 655 [(Avy, wi 1) = Bi(vj1,wi1)] =0 .
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More generally, consider an inner product (v,1,w;) with i < j—1,

(Uj+17 wl) = 6]7+11[(A,UJ7 wz) — ('Uja wz) - ﬂ] ('Ujfl, ’U]l)]
= 05 [(vy, ATwi) = (v, wi) = By(vj 1, wi)]
= 53'111[(%‘, Biriwig1 + dw; + dw;—1) — (v, wy)

—Bj(vj—1, wi)] .

By the induction hypothesis, all of the inner products in the above
expression vanish. We can show in the same way that (v;, w;41) =
0 for 7 < j. Finally, we have by construction (vj1,w;41) = 1.
This completes the induction proof.

The proof of the other matrix relations is identical with the
proof of the similar relations in Arnoldi’s method. [

The relation (6.31) is key to understanding the nature of the
method. From what we have seen in Chapter IV on general
projection methods, the matrix 7,, is exactly the projection of
A obtained from an oblique projection process onto K., (A, v;)
and orthogonally to K,,(A” w;). The approximate eigenvalues
)\Em) provided by this projection process are the eigenvalues of
the tridiagonal matrix 7},. A Ritz approximate eigenvector of A
associated with A" is defined by u{™ = V,,y\™ where y{™ is an
eigenvector associated with the eigenvalue )\Em) of T,,. Similarly
to Arnoldi’s method, a number of the Ritz eigenvalues, typically a
small fraction of m, will constitute good approximations of corre-
sponding eigenvalues \; of A and the quality of the approximation
will improve as m increases.

We should mention that the result of Proposition 6.8, which
gives a simple and inexpensive way to compute residual norms
can readily be extended as follows:

(A=A Dul™ =5, e ym™y,, (6.32)

13 (3

and, as a result, [|(A = A Du{™ [l = [ 41eZy™] .
An interesting new feature here is that the operators A and

AM play a dual role in that we perform similar operations with
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them. We can therefore expect that if we get good approximate
eigenvectors for A we should in general get as good approxima-
tions for the eigenvectors of A”. In fact we might also view the
non-Hermitian Lanczos procedure as a method for approximating
eigenvalues and eigenvectors of the matrix A by a projection
method onto L,, = span{wy, AZwy, ..., (AT)™ Lw,} and orthog-
onally to Iy (A, v1). As a consequence, both the left and right
eigenvectors of A will be well approximated by the process. In
contrast Arnoldi’s method only computes approximations to the
right eigenvectors. The approximations to the left eigenvectors
are of the form W,,2™ where 2™ is a left eigenvector of T},
associated with the eigenvalue )\Em). This constitutes one of the
major differences between the two methods. There are applica-
tions where both left and right eigenvectors may be needed. In
addition, when estimating errors and condition numbers of the
computed eigenpair it might be crucial that both the left and the
right eigenvectors be available.

From the practical point of view, another big difference be-
tween the non-Hermitian Lanczos procedure and the Arnoldi meth
ods is that we now only need to save a few vectors in memory
to execute the algorithm if no reorthogonalization is performed.
More precisely, we need 6 vectors of length n plus some storage for
the tridiagonal matrix, no matter how large m is. This is clearly
a significant advantage.

On the other hand there are more risks of breakdown with the
non-Hermitian Lanczos method. The algorithm will break down
whenever (0;11,w;;+1) = 0 which can be shown to be equivalent
to the existence of a vector in K,,(A4,v;) that is orthogonal to
the subspace KC,,,(A”,w;). In fact this was seen to be a necessary
and sufficient condition for the oblique projector onto C,, (A, v;)
orthogonally to /C,,(A", w;) not to exist. In the case of Arnoldi’s
method a breakdown is actually a favorable situation since we are
guaranteed to obtain exact eigenvalues in this case as was seen
before. The same is true in the case of the Lanczos algorithm
when either 9., = 0 or w;y; = 0. However, when 0;;; # 0



192 CHAPTER VI

and w11 # 0 then this is non-longer true. In fact the serious
problem is not as much caused by the exact occurrence of this
phenomenon which Wilkinson [183] calls serious breakdown, as it
is its near occurrence. A look at the algorithm indicates that we
may have to scale the Lanczos vectors by small quantities when
this happens and the consequence after a number of steps may be
serious. This is further discussed in the next subsection.

Since the subspace from which the approximations are taken is
identical with that of Arnoldi’s method, we have the same bounds
for the distance ||(I — P,,)u;||o. However, this does not mean in
any way that the approximations obtained by the two methods are
likely to be of similar quality. One of the weaknesses of the method
is that it relies on oblique projectors which may suffer from poor
numerical properties. Moreover, the theoretical bounds shown
in Chapter IV do indicate that the norm of the projector may
play a significant role. The method has been used successfully by
Cullum and Willoughby [24, 22] to compute eigenvalues of very
large matrices. We will discuss these implementations in the next
section.

4.2. Practical Implementations

There are various ways of improving the standard non-Hermitian
Lanczos algorithm which we now discuss briefly. A major focus
of researchers in this area is to find ways of circumventing the po-
tential breakdowns or ‘near breakdowns’ in the algorithm. Other
approaches do not attempt to deal with the breakdown but rather
try to live with it. We will weigh the pros and cons of both ap-
proaches after we describe the various existing scenarios.

4.2.1 Look-Ahead Lanczos Algorithms

As was already mentioned, a problem with the Lanczos algorithm
is the potential of breakdown in the normalization steps (6.26)
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and (6.27). Such a break down will occur whenever
(041, Wjs1) =0, (6.33)

which can arise in two different situations. Either one of the two
vectors 041 or w;41 vanishes or they are both nonzero but their
inner product is zero. In the first case, we have again the ‘lucky
breakdown’ scenario which we have seen in the case of Hermitian
matrices. Thus, if ;1 = 0 then span{V;} is invariant and all
approximate eigenvalues and associated right eigenvectors will be
exact, while if @;;; = 0 then span{W¥;} will be invariant and
the approximate eigenvalues and associated left eigenvectors will
be exact. The second case, when neither of the two vectors is
zero but their inner product is zero is termed serious breakdown
by Wilkinson (see [183], p. 389). Fortunately, there are some
cures, that will allow one to continue the algorithm in most cases.
The corresponding modifications of the algorithm are often put
under the denomination Look-Ahead Lanczos algorithms . There
are also rare cases of ‘incurable’ breakdowns which will not be
discussed here (see [125] and [174]). The main idea of Look-
Ahead variants of the Lanczos algorithm is that even though the
pair v;41, w;j41 cannot be defined it is often the case that the pair
Vji2, Wit can be defined. The algorithm can then be pursued
from that iterate as before until a new breakdown is encountered.
If the pair v;12, wj;2 cannot be defined then one can try the pair
Vj4+3, Wj43 and so on.

To be more precise on why this is possible, we need to go back
to the connection with orthogonal polynomials mentioned earlier
for the Hermitian case. We can extend the relationship to the
non-Hermitian case by defining the bilinear form on the subspace
|Pm71

<p,q>= (p(A)vr, q(AT)wy). (6.34)
Unfortunately, this can constitute an ‘indefinite inner product’

since < p,p > can now be zero or even negative. We note that
there is a polynomial p; of degree j such that 9,4, = p;(A)vy
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and in fact the same polynomial intervenes in the equivalent ex-
pression of w;y;. More precisely, there is a scalar v; such that
W1 = vjpj(A")vy. Similarly to the Hermitian case the non-
Hermitian Lanczos algorithm attempts to compute a sequence of
polynomials that are orthogonal with respect to the indefinite in-
ner product defined above. If we define the moment matrix

My={<z" a7 ' >}hiiok

then this process is mathematically equivalent to finding a factor-
ization
My, = LUy

of the moment matrix My, in which Uy is upper triangular and
Ly, is lower triangular. Note that this matrix is a Hankel matrix,
i.e., a;j is constant for ¢ + j = constant.

Because

we observe that there is a serious breakdown at step j if and only
if the indefinite norm of the polynomial p; at step j vanishes.
The main idea of the Look-Ahead Lanczos algorithms is that if
we skip this polynomial it may still be possible to compute p;i;
and continue to generate the sequence. To explain this simply, we
consider

gj(r) =apj 1 and g (x) = 2°p; 1 (x) .

It is easy to verify that both ¢; and ¢;4; are orthogonal to the
polynomials py, ...,pj_2. We can, for example, define (somewhat
arbitrarily) p; = ¢;, and get p;;; by orthogonalizing ¢;1, against
pj—1 and p;. It is clear that the resulting polynomial will then
be orthogonal against all polynomials of degree < j, see Exercise
P-6.11. Therefore we can continue the algorithm from step j + 1
in the same manner. Exercise P-6.11 generalizes this to the case
where we need to skip k£ polynomials rather than just one. This
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simplistic description gives the main mechanism that lies behind
the different versions of Look-Ahead Lanczos algorithms proposed
in the literature. In the Parlett-Taylor-Liu implementation [125],
it is observed that the reason for the break down of the algorithm
is that the pivots encountered during the LU factorization of the
moment matrix My vanish. Divisions by zero are then avoided by
implicitly performing a pivot with a 2 X 2 matrix rather than a
using a 1 x 1 pivot.

The drawback of Look-Ahead implementations is the nonneg-
ligible added complexity. In addition to the difficulty of deciding
when to consider that one has a near break-down situation, one
must cope with the fact that the matrix 7;,, is no longer tridiago-
nal. It is easy to see that whenever a step is skipped, we introduce
a ‘bump’; as it it termed in [125], above the superdiagonal ele-
ment. This further complicates the issue of the computation of
the eigenvalues of the Ritz values.

4.2.2 The Issue of Reorthogonalization

Just as in the Hermitian case, the vectors w; and v; will tend to
loose their bi-orthogonality. Techniques that perform some form
of ‘partial’ or ‘selective’ reorthogonalization can be developed for
non-Hermitian Lanczos algorithm as well. One difficulty here is
that selective orthogonalization, which typically requires eigenvec-
tors, will suffer from the fact that eigenvectors may be inaccurate.
Another problem is that we now have to keep two sets of vectors,
typically in secondary storage, instead of only one.

An alternative to reorthogonalization is to live with the loss of
orthogonality. Although the theory is not as well understood in
the non-Hermitian case as it is in the Hermitian case, it has been
observed that despite the loss of orthogonality, convergence is still
observed in general, at the price of a few practical difficulties.
More precisely, a converged eigenvalue may appear several times,
and monitoring extraneous eigenvalues becomes important. Cul-
lum and Willoughby [25] suggest precisely such a technique based
on a few heuristics. The technique is based on a comparison of
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the eigenvalues of the successive tridiagonal matrices 7.

5. Block Krylov Methods

In many circumstances it is desirable to work with a block of
vectors instead of a single vectors. For example, in out-of core
finite-element codes it is a good strategy to exploit the presence
of a block of the matrix A in fast memory, as much as possible.
This can easily done with a method such as the subspace iteration
for example, but not the usual Arnoldi/Lanczos algorithms. In
essence, the block Arnoldi method is to the Arnoldi method what
the subspace iteration is to the usual power method. Thus, the
block Arnoldi can be viewed as an acceleration of the subspace
iteration method. There are many possible implementations of
the algorithm three of which are described next.

ALGORITHM 6.7 Block Arnoldi

1. Start: Choose a unitary matrix V; of dimension n X r.

2. Iterate: for j = 1,2,..., m compute:
Hy =V"AV; i=1,2,...,], (6.35)
J
W= AV; = > ViHy; (6.36)

=1

W; =V;41H;1; Q-R decomposition of W;.  (6.37)

The above algorithm is a straightforward block analogue of Algo-
rithm 6.1. By construction, the blocks constructed by the algo-
rithm will be orthogonal blocks that are orthogonal to each other.
In what follows we denote by I the k£ x k identity matrix and use
the following notation

Un = [Vi,Vo,...., V],
H,, = (Hijhi<ij<m» Hij =0, i>j+1,
E,, = matrix of the last r columns of I,,,.
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Then, the analogue of the relation (6.8) is
AUm =U,H, + Vm+1Hm+1,mEg-

Thus, we obtain a relation analogous to the one we had before
except that the matrix H,, is no longer Hessenberg but band-
Hessenberg, in that we have r — 1 additional diagonals below the
subdiagonal.

A second version of the algorithm would consist of using a
modified block Gram-Schmidt procedure instead of the simple
Gram-Schmidt procedure used above. This leads to a block gen-
eralization of Algorithm 6.2, the Modified Gram-Schmidt version
of Arnoldi’s method.

ALGORITHM 6.8 Block Arnoldi — MGS version
1. Start: Choose a unitary matrix V; of size n X r.
2. Iterate: For j =1,2,...,m do:
e Compute W; := AV}
e Fori=1,2,...,7 do:
Hij = ‘/;HWj
e Compute the Q-R decomposition W; =V, 1Hj

Again, in practice the above algorithm is more viable than its
predecessor. Finally, a third version, developed by A. Ruhe, see
reference [134], for the symmetric case (Block Lanczos algorithm),
yields an algorithm that is quite similar to the original Arnoldi
algorithm.

ALGORITHM 6.9 Block Arnoldi - Ruhe’s variant

1. Start: Choose r initial orthonormal vectors {v;}i—1,. ;-
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2. Iterate: forj=r,r+1,,...,m X r do:

(a) Set k:=j—r+1;
(b) Compute w := Avy;
(¢) Fori=1,2,...,j do
o hij = (w,v;)
o wi=w — hv;

(d) Compute hj1y = ||w|lz and vj1y == w/hji1 .

Observe that the particular case r = 1 coincides with the usual
Arnoldi process. That the two algorithms 6.8 and 6.9 are mathe-
matically equivalent is straightforward to show. The advantage of
the above algorithm, is its simplicity. On the other hand a slight
disadvantage is that we give up some potential for parallelism. In
the original version the columns of the matrix AV} can be com-
puted in parallel whereas in the new algorithm, we must compute
them in sequence.

Generally speaking, the block methods are of great practical
value in some applications but they are not as well studied from
the theoretical point of view. One of the reasons is possibly the
lack of any convincing analogue of the relationship with orthogo-
nal polynomials established in Subsection 3.2 for the single vector
Lanczos algorithm. We have not covered the block versions of
the two Lanczos algorithms (Hermitian and non-Hermitian) but
these generalizations are straightforward.

6. Convergence of the Lanczos Process

In this section we examine the convergence properties of the Her-
mitian Lanczos algorithm, from a theoretical point of view. Well-
known results from approximation theory will be used to derive
a convergence analysis of the method. In particular Chebyshev
polynomials play an important role and we refer the readers to
the end of Chapter IV for some background on these polynomials.
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6.1. Distance between K,, and an Eigenvector

In the following we will assume that the eigenvalues of the Her-
mitian matrix A are labeled in decreasing order, i.e.,

A > A 2> >N,

and that the approximate eigenvalues are labeled similarly. We
will now state the main result of this section, starting with the
following lemma.

Lemma 6.1 Let P; be the spectral projector associated with the
eigenvalue \;. Then, iof Puy # 0, we have

tan 0 (u;, ICpp) = min IIp(A)y;|l2 tan O(u;,v1)  (6.38)
1

pePr_1, p(2i)=
i which

1—P;)v .
yi: m Zf (I_‘PZ)’Ul%O)
0 otherwise.

Proof. The subspace IC,, consists of all vectors of the form
x = q(A)v; where ¢ is any polynomial of degree < m — 1. We
have the orthogonal decomposition

z = q(A)vy = q(A) P + q(A)(I — P)vy
and the angle between x and wu; is defined by

1g(A) (I = P)vi]f2
lg(A) Pyvr ]2
lg(A)yill2 (1 = P)vill
lg(A)| | Pyvr |2

If we let p(A\) = ¢(N)/q(N\;) we get

tan 0(x, u;)

tan 0(x,u;) = [|p(A)y;||2 tan O(vq, u;)

which shows the result by taking the minimum over all z’s in .
]



