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We now write the vector u�t� as u�t� � Q�t�x for an arbitrary
vector x�

�I �Q�Q�t�x � S���� ��t�I �Q�EQ�t�x�

���t�� ���I �Q�Q�t�x	 �

The above equation yields an estimate of the norm of �I�Q�Q�t��
which is the sine of the angle between the invariant subspaces
M � Ran�Q� and M�t� � Ran�Q�t��


Proposition ��� Assume that � is a simple eigenvalue of A�
When the matrix A is perturbed by the matrix tE� then the sine
of the angle between the invariant subspaces M and M�t� of A
and A� tE associated with the eigenvalues � and ��t� is approx�
imately�

sin ��M�M�t�� � jtjkS�����I �Q�EQ�t�k
the approximation being of second order with respect to t�

Thus� we can de�ne the condition number for invariant subspaces
as being the �spectral� norm of S����


The more interesting situation is when the invariant subspace
is associated with a multiple eigenvalue
 What was just done
for one�dimensional invariant subspaces can be generalized to
multiple�dimensional invariant subspaces
 The notion of condi�
tion numbers here will require some knowledge about generalized
solutions to Sylvester
s equations
 A Sylvester equation is a ma�
trix equation of the form

AX �XR � B ��
���

where A is n�n� X and B are n�r and R is r�r
 The important
observation which we would like to exploit is that ��
��� is nothing
but a linear system of equations with n r unknowns
 It can be
shown that the mapping X � AX �XR is invertible under the
simple condition that the spectra of A and R have no point in
common
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We now proceed in a similar manner as for simple eigenvalues
and write�

AU � UR

�A� tE�U�t� � U�t�R�t�

in which U and U�t� are n � r unitary matrices and R and R�t�
are r � r upper triangular
 Subtracting U�t�R from the second
equation we obtain

AU�t�� U�t�R � �tEU�t� � U�t��R�t�� R�

Multiplying both sides by I � Q and using again the relation
��
����

�I �Q�A�I �Q�U�t�� �I �Q�U�t�R

� �I �Q���tEU�t� � U�t��R�t��R�	

Observe that the operator

X � �I �Q�A�I �Q�X �XR

is invertible because the eigenvalues of �I�Q�A�I�Q� and those
of R form disjoint sets
 Therefore� we can de�ne its inverse which
we call S����� and we have

�I �Q�U�t� � S���� �t�I �Q�EU�t� � �I �Q�U�t��R�t�� R�	

As a result� up to lower order terms� the sine of the angle be�
tween the two subspaces is jtjkS�����I�Q�EU�t�k� a result that
constitutes a direct generalization of the previous theorem


�� Localization Theorems

In some situations one wishes to have a rough idea of where the
eigenvalues lie in the complex plane� by directly exploiting some
knowledge on the entries of the matrix A
 We already know a
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simple localization result that uses any matrix norm� since we
have

j�ij � kAk
i
e
� any eigenvalue belongs to the disc centered at the origin and
of radius kAk
 A more precise localization result is provided by
Gerschgorin
s theorem


Theorem ���� �Gerschgorin ����	 Any eigenvalue � of a ma�
trix A is located in one of the closed discs of the complex plane
centered at aii and having the radius

j�nX
j��
j ��i

jaijj �

In other words�

� � � ��A�� � i such that j�� aiij �
j�nX
j��
j ��i

jaijj � ��
���

Proof� The proof is by contradiction
 Assume that ��
���
does not hold
 Then there is an eigenvalue � such that for i �
�� �� � � � � n we have

j�� aiij �
j�nX

j���j ��i

jaijj � ��
���

We can write A � �I � D � �I � H� where D � diag faiig
and H is the matrix obtained from A by replacing its diagonal
elements by zeros
 Since D � � is invertible we have

A� �I � �D � �I��I � �D � �I���H� � ��
���

The elements in row i of the matrix C � �D � �I���H are cij �
aij��aii� �� for j 	� i and cii � �� and so the sum of their moduli
are less than unity by ��
���
 Hence

���D � �I���H� � k�D � �I���Hk� 	 �
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and as a result the matrix I �C � �I � �D� �I���H� is nonsin�
gular
 Therefore� from ��
��� �A� �I� would also be nonsingular
which is a contradiction


Since the result also holds for the transpose of A� we can for�
mulate a version of the theorem based on column sums instead of
row sums�

� � � ��A�� � j such that j�� ajjj �
i�nX
i��
i��j

jaijj � ��
���

The discs de�ned in the theorem are called Gerschgorin discs

There are n Gerschgorin discs and their union contains the spec�
trum of A
 The above results can be especially useful when the
matrix is almost diagonal� as is often the case when an algorithm
is used to diagonalize a matrix and the process is nearing conver�
gence
 However� in order to better exploit the theorem� we need
to show the following additional result


Theorem ���
 � Suppose that there are m Gerschgorin discs
whose union S is disjoint from all other discs� Then S contains
exactly m eigenvalues� �counted with their multiplicities��

Proof� Let A�t� � D � tH where � � t � �� and D�H are
de�ned in the proof of Gerschgorin
s theorem
 Initially when t � �
all eigenvalues of A�t� are at the discs of radius �� centered at
aii
 By a continuity argument� as t increases to �� the branches of
eigenvalues �i�t� will stay in their respective discs as long as these
discs stay disjoint
 This is because the image of the connected
interval ����	 by �i�t� must be connected
 More generally� if the
union of m of the discs are disjoint from the other discs� the
union S�t� of the corresponding discs as t varies� will contain m
eigenvalues
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An important particular case is that when one disc is disjoint from
the others then it must contain exactly one eigenvalue


There are other ways of estimating the error of aii regarded as
an eigenvalue of A
 For example� if we take as approximate eigen�
vector the i�th column of the identity matrix we get the following
result from a direct application of Kato�Temple
s theorem in the
Hermitian case


Proposition ��� Let i be any integer between � and n and let
� be the eigenvalue of A closest to aii� and 
 the next closest
eigenvalue to aii� Then if we call �i the ��norm of the �n � ���
vector obtained from the i� th column of A by deleting the entry
aii we have

j�� aiij � ��i
j
� aiij �

Proof� The proof is a direct application of Kato�Temple
s the�
orem


Thus� in the Hermitian case� the Gerschgorin bounds are not
tight in general since the error is of the order of the square of the
vector of the o��diagonal elements in a row �or column�� whereas
Gerschgorin
s result will provide an error estimate of the same
order as the ��norm of the same vector �in the ideal situation
when the discs are disjoint�
 However� we note that the isolated
application of the above proposition in practice may not be too
useful since we may not have an estimate of j
� aiij
 A simpler�
though less powerful� bound is j��aiij � �i
 These types of results
are quite di�erent in nature from those of Gerschgorin
s theorem

They simply tell us how accurate an approximation a diagonal
element can be when regarded as an approximate eigenvalue
 It
is an isolated result and does not tell us anything on the other
eigenvalues
 Gerschgorin
s result on the other hand is a global
result� in that it tells where all the eigenvalues are located� as a
group
 This distinction between the two types of results� namely
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the �local� a�posteriori error bounds on the one hand� and the
global localizations results such as Gerschgorin
s theorem on the
other� is often misunderstood


Problems

P���� If P is a projector onto M along S then PH is a projector onto
S� along M�� �Hint� see proof of Proposition �����

P���� Show that for two orthogonal bases V�� V� of the same subspace
M of Cn we have V�V

H
� x � V�V

H
� x �x�

P���� What are the eigenvalues of a projector� What about its eigen	
vectors�

P���� Let P be a projector and V � �v�� v�� � � � � vm� a basis of Ran
P ��
Why does there always exist a basis W � �w�� w�� � � � � wm� of L �
Ker
P �� such that the two sets form a biorthogonal basis� In general
given two subspacesM and S of the same dimensionm� is there always
a biorthogonal pair V�W such that V is a basis of M and W a basis
of S�

P���� Let P be a projector� V � �v�� v�� � � � � vm� a basis of Ran
P ��
and U a matrix the columns of which form a basis of Ker
P �� Show
that the system U� V forms a basis of Cn� What is the matrix repre	
sentation of P with respect to this basis�

P���� Show that if two projectors P� and P� commute then their
product P � P�P� is a projector� What are the range and kernel of
P �

P���	 Consider the matrix seen in Example ��
� We perturb the term
a�� to ������� Give an estimate in the changes of the eigenvalues of
the matrix� Use any FORTRAN library or interactive tool to compute
the eigenvectors� eigenvalues of the perturbed matrix�

P���
 Let

�
X�Y � � max
x � X�kxk���

dist
u� Y ��
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Show that

�
M��M�� � maxf�
M��M��� �
M��M��g �

P���� Given two subspaces M and S with two orthogonal bases V
and W show that the singular values of V HW are between zero and
one� The canonical angles between M and S are de�ned as the acutes
angles whose cosines are the singular values �i� i�e�� cos �i � �i
V

HW ��
The angles are labeled in descending order� Show that this de�nition
does not depend on the order of the pair M�S 
in other words that
the singular values of WHV are identical with those of V HW ��

P����� Show that the largest canonical angle between two subspaces

see previous problem� is ��� i� the intersection of M and the orthog	
onal of S is not reduced to f�g�
P����� Let P�� P� be two orthogonal projectors with ranges M� and
M� respectively of the same dimension m � n�� and let Vi� i � �� �
be an orthogonal basis of Mi� i � �� �� Assuming at �rst that the
the columns of the system �V�� V�� are linearly independent what is
the matrix representation of the projector P��P� with respect to the
basis obtained by completing V�� V� into a basis of Cn� Deduce that
the eigenvalues of P��P� are � sin �i� where the �i�s are the canonical
angles between M� and M� as de�ned in the previous problems� How
can one generalize this result to the case where the columns of �V�� V��
are not linearly independent�

P����� Use the previous result to show that

�
M��M�� � sin �max

where �max is the largest canonical angle between the two subspaces�

P����� Prove the second equality in equation 
����� of the proof of
Theorem �����

P����� Let E � xpH � yqH where x � y and p � q� What is the
�	norm of E� �Hint� Compute EHE and then �nd the singular values
of E��

P����� Show that the condition number of an eigenvalue 	 of a ma	
trix A does not change if A is transformed by an orthogonal similarity
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transformation� Is this true for any similarity transformation� What
can be said of the condition number of the corresponding eigenvector�

P����� Consider the matrix obtained from that of example ��� in
which the elements �� above the diagonal are replaced by �
� where

 is a constant� Find bounds similar to those in Example ��� for the
condition number of the eigenvalue 	� of this matrix�

P����	 Under the same assumptions as those of Theorem ��
� estab	
lish the improved error

sin �
�u� u� �
s
krk�� � ��

�� � ��

in which � � j	� �	j� �Hint� Follow proof of theorem ��
�

Notes and References� Some of the material in this chapter is based
on ���� and ����� A broader and more detailed view of perturbation analysis
for matrix problems is the recent book by Stewart and Sun ���	�� The treat

ment of the equivalence between the projectors as de�ned from the Jordan
canonical form and the one de�ned from the Dunford integral seems to be
new� The results of Section 	�� are simpler versions of those found in ��	�

which should be consulted for more detail� The notion of condition number
for eigenvalue problems is discussed in detail in Wilkinson ����� who seems
to be at the origin of the notion of condition numbers for eigenvalues and
eigenvectors� �
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Chapter IV

The Tools of Spectral

Approximation

Many of the algorithms used to approximate spectra of large ma�
trices consist of a blend of a few basic mathematical or algorith�
mic tools� such as projection methods� Chebyshev acceleration�
de�ation� shift�and�invert strategies� to name just a few
 We
have grouped together these tools and techniques in this chap�
ter
 We start with some background on well�known procedures
based on single vector iterations
 These have historically provided
the starting point of many of the more powerful methods
 Once
an eigenvalue�eigenvector pair is computed by one of the single
vector iterations� it is often desired to extract another pair
 This
is done with the help of a standard technique known as de�a�
tion which we discuss in some detail
 Finally� we will present
the common projection techniques which constitute perhaps the
most important of the basic techniques used in approximating
eigenvalues and eigenvectors




��� Chapter IV

�� Single Vector Iterations

One of the oldest techniques for solving eigenvalue problems is the
so�called power method
 Simply described this method consists of
generating the sequence of vectors Akv� where v� is some nonzero
initial vector
 A few variants of the power method have been
developed which consist of iterating with a few simple functions
of A
 These methods involve a single sequence of vectors and we
describe some of them in this section


���� The Power Method

The simplest of the single vector iteration techniques consists of
generating the sequence of vectors Akv� where v� is some nonzero
initial vector
 This sequence of vectors when normalized appropri�
ately� and under reasonably mild conditions� converges to a dom�
inant eigenvector� i
e
� an eigenvector associated with the eigen�
value of largest modulus
 The most commonly used normalization
is to ensure that the largest component of the current iterate is
equal to one
 This yields the following algorithm


Algorithm ��� �The Power Method�	


 �� Start	 Choose a nonzero initial vector v��


 �� Iterate	 for k � �� �� � � � until convergence� compute

vk �
�

�k
Avk��

where �k is a component of the vector Avk�� which has the
maximum modulus�

The following theorem establishes a convergence result for the
above algorithm
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Theorem ��� Assume that there is one and only one eigenvalue
�� of A of largest modulus and that �� is semi�simple� Then either
the initial vector v� has no component in the invariant subspace
associated with �� or the sequence of vectors generated by Algo�
rithm 
�� converges to an eigenvector associated with �� and �k
converges to ���

Proof� Clearly� vk is nothing but the vector Akv� normalized
by a certain scalar ��k in such a way that its largest component is
unity
 Let us decompose the initial vector v� as

v� �
pX

i��

Piv� ��
��

where the Pi
s are the spectral projectors associated with the dis�
tinct eigenvalues �i� i � �� � � � � p
 Recall from ��
��� of Chapter ��
that APi � Pi��iPi �Di� where Di is a nilpotent of index li� and
more generally� by induction we have AkPi � Pi��iPi �Di�

k
 As
a result we obtain�

vk �
�

��k
Ak

pX
i��

Piv� �
�

��k

pX
i��

AkPiv� �
�

��k

pX
i��

Pi��iI�Di�
kv� �

Hence� noting that D� � � because �� is semi�simple�

vk �
�

��k

pX
i��

Pi��iPi �Di�
kv�

�
�

��k

�
�k�P�v� �

pX
i��

Pi��iPi �Di�
kv�

�

�
�k�
��k

�
P�v� �

pX
i��

�

�k�
��iPi �Di�

kPiv� �

�
��
��

The spectral radius of each operator ��iPi � Di���� is less than
one since j�i���j 	 � and therefore� its k�th power will converge
to zero
 If P�v� � � the theorem is true
 Assume that P�v� 	�
�
 Then it follows immediately from ��
�� that vk converges to
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P�v� normalized so that its largest component is one
 That �k
converges to the eigenvalue �� is an immediate consequence of
the relation Avk�� � �kvk and the fact the sequence of vectors vk
converges


The proof suggests that the convergence factor of the method
is given by

�D �
j��j
j��j

where �� is the second largest eigenvalue in modulus
 This ratio
represents the spectral radius of the linear operator �

��
A restricted

to the subspace that excludes the invariant subspace associated
with the dominant eigenvalue
 It is a common situation that the
eigenvalues �� and �� are very close from one another
 As a result
convergence may be extremely slow


Example ��� Consider the Markov Chain matrix Mark
��� which
has been described in Chapter �� This is a matrix of size n � ��
which has two dominant eigenvalues of equal modulus namely 	 � �
and 	 � ��� As is to be expected the power method applied directly
to A does not converge� To obtain convergence we can for example
consider the matrix I � A whose eigenvalues are those of A shifted
to the right by one� The eigenvalue 	 � � is then transformed into
the eigenvalue 	 � � which now becomes the 
only� dominant eigen	
value� The algorithm then converges and the convergence history is
shown in Table ���� In the �rst column of the table we show the iter	
ation number� The results are shown only every �� steps and at the
very last step when convergence has taken place� The second column
shows the �	norm of the di�erence between two successive iterates� i�e��
kxi�� � xik� at teration i� while the third column shows the residual
norm kAx� �
x�xk�� in which �
x� is the Rayleigh quotient of x and
x is normalized to have a �	norm unity� The algorithm is stopped as
soon at the �	norm of the di�erence between two successive iterates
becomes less than � � ����� Finally� the last column shows the corre	
sponding eigenvalue estimates� Note that what is shown is simply the
coe�cient 
k� shifted by �� to get an approximation to the eigenvalue
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of Mark
��� instead of Mark
����I� The initial vector in the iteration
is the vector x� � 
�� �� � � � � ��T �

Iteration Norm of di�� Res� norm Eigenvalue

�� ��
��D	�� ����
D	�� �������
�

�� �����D	�� �����D	�� ����
�����

� �����D	�� �����D	�� ����������
�� �����D	�� �����D	�� ����������
��� �����D	�� �����D	�� ����������
��� ���
�D	�� �����D	�� ����������
��� �����D	�
 �����D	�
 ����������
�
� �����D	�� �����D	�� ����������

Table ��� Power iteration with A � Mark
��� � I�

If the eigenvalue is multiple� but semi�simple� then the algo�
rithm provides only one eigenvalue and a corresponding eigen�
vector
 A more serious di�culty is that the algorithm will not
converge if the dominant eigenvalue is complex and the original
matrix as well as the initial vector are real
 This is because for
real matrices the complex eigenvalues come in complex pairs and
as result there will be �at least� two distinct eigenvalues that will
have the largest modulus in the spectrum
 Then the theorem
will not guarantee convergence
 There are remedies to all these
di�culties and some of these will be examined later


���� The Shifted Power Method

In Example �
� we have been lead to use the power method not
on the original matrix but on the shifted matrix A � I
 One
observation is that we could also have iterated with a matrix of
the form B��� � A � �I for any positive � and the choice � � �
is a rather arbitrary choice
 There are better choices of the shift
as is suggested by the following example


Example ��
 Consider the same matrix as in the previous example�
in which the shift � is replaced by � � ���� The new convergence
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history is shown in Table ���� and indicates a much faster convergence
than before�

Iteration Norm of di�� Res� Norm Eigenvalue

�� �����D	�� �����D	�� ����������
�� �����D	�� �����D	�� ������
���

� �����D	�� �����D	�� ���������

�� �����D	�
 �����D	�
 ����������
�� �����D	�� ���
�D	�� ����������

Table ��� Power iteration on A �Mark
��� � ���� I�

More generally� when the eigenvalues are real it is not too dif�
�cult to �nd the optimal value of �� i
e
� the shift that maximizes
the asymptotic convergence rate� see Problem P��
�
 The scalars
� are called shifts of origin
 The important property that is used
is that shifting does not alter the eigenvectors and that it does
change the eigenvalues in a simple known way� it shifts them by
�


���� Inverse Iteration

The inverse power method� or inverse iteration� consists simply
of iterating with the matrix A�� instead of the original matrix A

In other words� the general iterate vk is de�ned by

vk �
�

�k
A��vk�� � ��
��

Fortunately it is not necessary to compute the matrix A�� explic�
itly as this could be rather expensive for large problems
 Instead�
all that is needed is to carry out the LU factorization of A prior to
starting the vector iteration itself
 Subsequently� one must solve
an upper and lower triangular system at each step
 The vector
vk will now converge to the eigenvector associated with the dom�
inant eigenvalue of A��
 Since the eigenvalues of A and A�� are
the inverses of each other while their eigenvectors are identical�
the iterates will converges to the eigenvector of A associated with
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the eigenvalue of smallest modulus
 This may or may not be what
is desired but in practice the method is often combined with shifts
of origin
 Indeed� a more common problem in practice is to com�
pute the eigenvalue of A that is closest to a certain scalar � and
the corresponding eigenvector
 This is achieved by iterating with
the matrix �A � �I���
 Often� � is referred to as the shift
 The
corresponding algorithm is as follows


Algorithm ��
 
 Inverse Power Method

�� Start
 Compute the LU decomposition A � �I � LU and
choose an initial vector v��

�� Iterate
 for k � �� �� � � � � until convergence compute

vk �
�

�k
�A� �I���vk�� �

�

�k
U��L��vk�� ��
��

where �k is a component of the vector �A��I���vk�� which
has the maximum modulus�

Note that each of the computations of y � L��vk�� and then
v � U��y can be performed by a forward and a backward trian�
gular system solve� each of which costs only O�n���� operations
when the matrix is dense
 The factorization in step � is much
more expensive whether the matrix is dense or sparse


If �� is the eigenvalue closest to � then the eigenvalue of largest
modulus of �A��I��� will be �������� and so �k will converge to
this value
 An important consideration that makes Algorithm �
�
quite attractive is its potentially high convergence rate
 If �� is
the eigenvalue of A closest to the shift � and �� is the next closet
one then the convergence factor is given by

�I �
j�� � �j
j�� � �j ��
��

which indicates that the convergence can be very fast if � is much
closer to the desired eigenvalue �� than it is to ��
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From the above observations� one can think of changing the
shift � occasionally into a value that is known to be a better
approximation of �� than the previous �
 For example� one can
replace occasionally � by the estimated eigenvalue of A that is
derived from the information that �k converges to ����� � ���
i
e
� we can take

�new � �old �
�

�k
�

Strategies of this sort are often referred to as shift�and�invert tech�
niques


Another possibility� which may be very e�cient in the Hermi�
tian case� is to take the new shift to be the Rayleigh quotient of
the latest approximate eigenvector vk
 One must remember how�
ever� that the LU factorization is expensive so it is desirable to
keep such shift changes to a minimum
 At one extreme where the
shift is never changed� we obtain the simple inverse power method
represented by Algorithm �
�
 At the other extreme� one can also
change the shift at every step
 The algorithm corresponding to
this case is called Rayleigh Quotient Iteration �RQI� and has been
extensively studied for Hermitian matrices


Algorithm ��� Rayleigh Quotient Iteration

�� Start
 Choose an initial vector v� such that kv�k� � ��

�� Iterate
 for k � �� �� � � � � until convergence compute

�k � �Avk��� vk��� �

vk �
�

�k
�A� �kI�

��vk���

where �k is chosen so that the ��norm of the vector vk is
one�

It is known that this process is globally convergent for Her�
mitian matrices� in the sense that �k converges and the vector
vk either converges to an eigenvector or alternates between two
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eigenvectors
 Moreover� in the �rst case �k converges cubically
towards an eigenvalue� see Parlett ����	
 In the case where vk os�
cillates� between two eigenvectors� then �k converges towards the
mid�point of the corresponding eigenvalues
 In the non�Hermitian
case� the convergence can be at most quadratic and there are no
known global convergence results except in the normal case
 This
algorithm is not much used in practice despite these nice proper�
ties� because of the high cost of the frequent factorizations


�� De�ation Techniques

Suppose that we have computed the eigenvalue �� of largest mod�
ulus and its corresponding eigenvector u� by some simple algo�
rithm� say algorithm �A�� which always delivers the eigenvalue
of largest modulus of the input matrix� along with an eigenvec�
tor
 For example� algorithm �A� can simply be one of the single
vector iterations described in the previous section
 It is assumed
that the vector u� is normalized so that ku�k� � �
 The problem
is to compute the next eigenvalue �� of A
 An old technique for
achieving this is what is commonly called a de�ation procedure

Typically� a rank one modi�cation is applied to the original matrix
so as to displace the eigenvalue ��� while keeping all other eigen�
values unchanged
 The rank one modi�cation is chosen so that
the eigenvalue �� becomes the one with largest modulus of the
modi�ed matrix and therefore� algorithm �A� can now be applied
to the new matrix to extract the pair ��� u�


���� Wielandt De�ation with One Vector

In the general procedure known as Wielandt
s de�ation only the
knowledge of the right eigenvector is required
 The de�ated ma�
trix is of the form

A� � A� �u�v
H ��
��

where v is an arbitrary vector such that vHu� � �� and � is an
appropriate shift
 It can be shown that the eigenvalues of A�
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are the same as those of A except for the eigenvalue �� which is
transformed into the eigenvalue �� � �


Theorem ��
 �Wielandt	 The spectrum of A� as de�ned by
�
��� is given by

��A�� � f�� � �� ��� ��� � � � � �pg �

Proof� For i 	� � the left eigenvectors of A satisfy

�AH � ��vuH� �wi � �iwi

because wi is orthogonal to u�
 On the other hand for i � �� we
have A�u� � ��� � ��u�


The above proof reveals that the left eigenvectors w�� � � � � wp

are preserved by the de�ation process
 Similarly� the right eigen�
vector u� is preserved
 It is also important to see what becomes
of the other right eigenvectors
 For each i� we seek a right eigen�
vector of A� in the form of �ui � ui � 
iu�
 We have�

A��ui � �A� �u�v
H��ui � 
iu��

� �iui � �
i�� � �vHui � �
i	u�� ��
��

Taking 
� � � shows� as is already indicated by the proposition�
that any eigenvector associated with the eigenvalue �� remains an
eigenvector of A�� associated with the eigenvalue ����
 For i 	� ��
it is possible to select 
i so that the vector �ui is an eigenvector of
A� associated with the eigenvalue �i�


i�v� � vHui
�� ��� � �i���

� ��
��

Observe that the above expression is not de�ned when the de�
nominator vanishes
 However� it is known in this case that the
eigenvalue �i � �� � � is already an eigenvalue of A�� i
e
� the
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eigenvalue ���� becomes multiple� and we only know one eigen�
vector namely u�


There are in�nitely many di�erent ways of choosing the vector
v
 One of the most common choices is to take v � w� the left
eigenvector
 This is referred to as Hotelling
s de�ation
 It has the
advantage of preserving both the left and right eigenvectors of A
as is seen from the fact that 
i � � in this situation
 Another
simple choice is to take v � u�
 In the next section we will
consider these di�erent possibilities and try to make a rational
choice between them


Example ��� As a test we consider again the matrix Mark
��� seen
is Example ���� For u� we use the vector computed from the shifted
power method with shift ���� If we take v to be a random vector and
x� to be a random vector� then the algorithm converges in ��� steps
and yields 	� 	 ���������
� The stopping criterion is identical with
the one used in Example ���� If we take v � u� or v � 
�� �� � � � � ��T �
then the algorithm converges in ��� steps�

���� Optimality in Wieldant�s De�ation

An interesting question that we wish to answer is� among all the
possible choices of v� which one is likely to yield the best possible
condition number for the next eigenvalue �� to be computed� This
is certainly a desirable goal in practice
 We will distinguish the
eigenvalues and eigenvectors associated with the matrix A� from
those of A by denoting them with a tilde
 The condition number
of the next eigenvalue ��� to be computed is� by de�nition�

Cond����� �
k�u�k�k �w�k�
j��u�� �w��j

where �u�� �w� are the right and left eigenvectors of A� associated
with the eigenvalue ���
 From what we have seen before� we know
that �w� � w� while �u� � u� � 
��v�u� where 
��v� is given by
��
��
 Assuming that kw�k� � � we get�

Cond����� �
ku� � 
��v�u�k�

j�u�� w��j ��
��
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where we have used the fact that �u�� w�� � �
 It is then clear
from ��
�� that the condition number of �� is minimized whenever


��v� � uH� u� � cos ��u�� u�� � ��
���

Substituting this result in ��
�� we obtain the equivalent condition

vHu� �

�
�� �� � ��

�

�
uH� u� � ��
���

to which we add the normalization condition�

vHu� � �� ��
���

There are still in�nitely many vectors v that satisfy the above two
conditions
 However� we can seek a vector v which is spanned by
two speci�c vectors
 There are two natural possibilities� we can
either take v in the span of �u�� w�� or in the span of �u�� u��
 The
second choice does not seem natural since the eigenvector u� is
not assumed to be known� it is precisely what we are trying to
compute
 However� it will illustrate an interesting point� namely
that the choice v � u� may be nearly optimal in realistic situ�
ations
 Thus� we will now consider the case v � spanfu�� u�g

The other interesting case� namely v � spanfu�� w�g� is left as an
exercise� see Exercise P��
�


We can write v as v � �u� � �z in which z is obtained by
orthonormalizing u� against u�� i
e
� z � �z�k�zk�� �z � u��uH� u�u�

From ��
��� we immediately get � � � and from ��
��� we obtain

� � ��� � ��
�

uH� u�
zHu�

�

which leads to the expression for the optimal v�

vopt � u� � �� � ��
�

cotan ��u�� u��z � ��
���

We also get that

Cond����� � Cond���� sin ��u�� u�� � ��
���
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Interestingly enough� when ������� is small with respect to � or
when � is close to ��� � the choice v � u� is nearly optimal


This particular choice has an interesting additional property�
it preserves the Schur vectors�

Proposition ��� Let u� be an eigenvector of A of norm �� as�
sociated with the eigenvalue �� and let A� � A � �u�u

H
� � Then

the eigenvalues of A� are ��� � ��� � and ��j � �j� j � �� � � � � � n�
Moreover� the Schur vectors associated with ��j� j � �� �� � � � � � n
are identical with those of A�

Proof� Let AU � UR be the Schur factorization of A� where R
is upper triangular and U is orthonormal
 Then we have

A�U � �A� �u�u
H
� 	U � UR � �u�e

H
� � U �R � �e�e

H
� 	 �

The result follows immediately


Example ��� We take again as a test example the matrix Mark
���
seen is Example ��� and Example ���� We use the approximate eigen	
vectors u� and u� as computed from Example ���� We then compute
the left eigenvector �w� using again the power method on the de�ated
and transposed matrix AH��uH� v� This is done fpur times� �rst with
v � w� � 
�� �� ���� ��T � then v � u��

v � 
����� ����� �� � � � � 
���n�T �
and �nally v � a random vector� The condition numbers obtained for
the second eigenvalue for each of these choices are shown in Table ����
See Problem P	��� for additional facts concerning this example�

v Cond
	��

w� ����������
u� ����������


����� � � ��T ����������
Random ����������

Table ��� Condition numbers of the second eigenvalue
for di�erent v�s�
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As is observed here the best condition numbers are obtained for
the �rst two choices� Note that the vector 
�� �� � � � � �� is a left eigen	
vector associated with the eigenvalue 	�� Surprisingly� these best two
condition numbers are equal� In fact computing the inner product of
u� and u� we �nd that it is zero� a result that is probably due to the
symmetries in the physical problem� The relation 
����� indicates that
in this situation the two condition numbers are equal to the condition
number for the unde�ated matrix�

���� De�ation with Several Vectors�

Let q�� q�� � � � qj be a set of Schur vectors associated with the eigen�
values ��� ��� � � � �j
 We denote by Qj the matrix of column vec�
tors q�� q�� � � � qj
 Thus�

Qj � �q�� q�� � � � � qj	

is an orthonormal matrix whose columns form a basis of the
eigenspace associated with the eigenvalues ��� ��� � � � �j
 We do
not assume here that these eigenvalues are real� so the matrix Qj

may be complex
 An immediate generalization of Proposition �
�
is the following


Proposition ��
 Let �j be the j � j diagonal matrix

�j � diag ���� ��� � � � �j��

and Qj an n� j orthogonal matrix consisting of the Schur vectors
of A associated with ��� � � � � �j� Then the eigenvalues of the matrix

Aj � A�Qj�jQ
H
j �

are ��i � �i � �i for i � j and ��i � �i for i�j� Moreover� its
associated Schur vectors are identical with those of A�
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Proof� Let AU � UR be the Schur factorization of A
 We have

AjU � �A�Qj�jQ
H
j 	U � UR �Qj�jE

H
j �

where Ej � �e�� e�� � � � ej	� Hence

AjU � U �R � Ej�jE
H
j 	

and the result follows


Clearly� it is not necessary that �j be a diagonal matrix
 We
can for example select it to be a triangular matrix
 However� it is
not clear how to select the nondiagonal entries in such a situation

An alternative technique for de�ating with several Schur vectors
is described in Exercise P��
�


���� Partial Schur Decomposition�

It is interesting to observe that the preservation of the Schur vec�
tors is analogous to the preservation of the eigenvectors under
Hotelling
s de�ation in the Hermitian case
 The previous propo�
sition suggests a simple incremental de�ation procedure consisting
of building the matrix Qj one column at a time
 Thus� at the j�th
step� once the eigenvector �uj�� of Aj is computed by the appro�
priate algorithm �A� we can orthonormalize it against all previous
qi
s to get the next Schur vector qj�� which will be appended to
qj to form the new de�ation matrix Qj��
 It is a simple exercise
to show that the vector qj�� thus computed is a Schur vector as�
sociated with the eigenvalue �j�� and therefore at every stage of
the process we have the desired decomposition

AQj � QjRj� ��
���

where Rj is some j � j upper triangular matrix

More precisely we may consider the following algorithm� in

which the successive shifts �i are chosen so that for example �i �
�i
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Algorithm ��� Schur Wielandt De�ation
For i � �� �� �� � � � � j � � do�

�� De�ne Ai � Ai�� � �i��qi��q
H
i�� �initially de�ne A� � A	

and compute the dominant eigenvalue �i of Ai and the cor�
responding eigenvector �ui�

�� Orthonormalize �ui against q�� q�� � � � � qi�� to get the vector
qi�

With the above implementation� we may have to perform most
of the computation in complex arithmetic even when A is real

Fortunately� when the matrix A is real� this can be avoided
 In
this case the Schur form is traditionally replaced by the quasi�
Schur form� in which one still seeks for the factorization ��
��
but simply requires that the matrix Rj� be quasi�triangular� i
e

one allows for � � � diagonal blocks
 In practice� if �j�� is com�
plex� most algorithms do not compute the complex eigenvector
yj�� directly but rather deliver its real and imaginary parts yR� yI
separately
 Thus� the two eigenvectors yR � iyI associated with
the complex pair of conjugate eigenvalues �j��� �j�� � ��j�� are
obtained at once


Thinking in terms of bases of the invariant subspace instead
of eigenvectors� we observe that the real and imaginary parts of
the eigenvector generate the same subspace as the two conjugate
eigenvectors and therefore we can work with these two real vectors
instead of the �complex� eigenvectors
 Hence if a complex pair
occurs� all we have to do is orthogonalize the two vectors yR� yI
against all previous qi
s and pursue the algorithm in the same
way
 The only di�erence is that the size of Qj increases by two
instead of just one in these instances


���� Practical De�ation Procedures

To summarize� among all the possible de�ation procedures we
can use to compute the next pair ��� u�� the following ones are
the most useful in practice
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�
 v � w� the left eigenvector
 This has the disadvantage of
requiring the left and right eigenvector
 On the other hand
both right and left eigenvectors of A� are preserved


�
 v � u� which is often nearly optimal and preserves the Schur
vectors


�
 Use a block of Schur vectors instead of a single vector


From the point of view of the implementation an important
consideration is that we never need to form the matrix A� ex�
plicitly
 This is important because in general A� will be a full
matrix
 In many algorithms for eigenvalue calculations� the only
operation that is required is an operation of the form y �� A�x

This operation can be performed as follows�

�a� Compute the vector y �� Ax�

�b� Compute the scalar t � � vHx�

�c� Compute y �� y � t u�


The above procedure requires only that the vectors u�� and v be
kept in memory along with the matrix A
 It is possible to de�ate
A� again into A� � and then into A� etc
 At each step of the
process we have

Ai � Ai�� � ��uiv
H
i �

Here one only needs to save the vectors �ui and vi along with the
matrix A
 However� one should be careful about the usage of
de�ation in general
 It should not be used to compute more than
a few eigenvalues and eigenvcectors
 This is especially true in
the non Hermitian case because of the fact that the matrix Ai

will accumulate errors from all previous computations and this
could be disastrous if the currently computed eigenvalue is poorly
conditioned
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�� General Projection Methods

Most eigenvalue algorithms employ in one way or another a pro�
jection technique
 The projection process can be the body of the
method itself or it might simply be used within a more complex
algorithm to enhance its e�ciency
 A simple illustration of the
necessity of resorting to a projection technique is when one uses
the power method in the situation when the dominant eigenvalue
is complex but the matrix A is real
 Although the usual sequence
xj�� � �jAxj where �j is a normalizing factor� does not con�
verge a simple analysis shows that the subspace spanned by the
last two iterates xj��� xj will contain converging approximations
to the complex pair of eigenvectors
 A simple projection tech�
nique onto those vectors will extract the desired eigenvalues and
eigenvectors� see Exercise P��
� for details


A projection method consists of approximating the exact eigen�
vector u� by a vector �u belonging to some subspace K referred to
as the subspace of approximants or the right subspace� by impos�
ing the so�called Petrov�Galerkin method that the residual vector
of �u be orthogonal to some subspace L� referred to as the left
subspace
 There are two broad classes of projection methods� or�
thogonal projection methods and oblique projection methods
 In
an orthogonal projection technique the subspace L is the same as
K
 In an oblique projection method L is di�erent from K and can
be totally unrelated to it


Not surprisingly� if no vector of the subspace K comes close
to the exact eigenvector u� then it is impossible to get a good
approximation �u to u from K and therefore the approximation
obtained by any projection process based on K will be poor
 If�
on the other hand� there is some vector in K which is at a small
distance � from u then the question is� what accuracy can we
expect to obtain� The purpose of this section is to try to answer
this question
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���� Orthogonal Projection Methods

Let A be an n � n complex matrix and K be an m�dimensional
subspace of Cn
 As a notational convention we will denote by the
same symbol A the matrix and the linear application in Cn that it
represents
 We consider the eigenvalue problem� �nd u belonging
to Cn and � belonging to C such that

Au � �u� ��
���

An orthogonal projection technique onto the subspace K seeks
an approximate eigenpair ��� �u to the above problem� with �� in C
and �u in K� such that the following Galerkin condition is satis�ed�

A�u� ���u 
 K � ��
���

or� equivalently�

�A�u� ���u� v� � � � � v � K� ��
���

Assume that some orthonormal basis fv�� v�� � � � � vmg of K
is available and denote by V the matrix with column vectors
v�� v�� � � � � vm
 Then we can solve the approximate problem nu�
merically by translating it into this basis
 Letting

�u � V y� ��
���

equation ��
��� becomes

�AV y � ��V y� vj� � �� j � �� � � � � m�

Therefore� y and �� must satisfy

Bmy � ��y ��
���

with
Bm � V HAV�

If we denote by Am the linear transformation of rankm de�ned by
Am � P

K
AP

K
then we observe that the restriction of this operator
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to the subspace K is represented by the matrix Bm with respect to
the basis V 
 The following is a procedure for computing numeri�
cally the Galerkin approximations to the eigenvalues eigenvectors
of A known as the Rayleigh�Ritz procedure


Algorithm ��� Rayleigh�Ritz Procedure


�� Compute an orthonormal basis fvigi�������m of the subspace
K� Let V � �v�� v�� � � � � vm	�

�� Compute Bm � V HAV 


�� Compute the eigenvalues of Bm and select the k desired ones
��i� i � �� �� � � � � k� where k � m�

�� Compute the eigenvectors yi� i � �� � � � � k� of Bm associated
with ��i� i � �� � � � � k� and the corresponding approximate
eigenvectors of A� �ui � V yi� i � �� � � � � k�

The above process only requires basic linear algebra computa�
tions
 The numerical solution of the m � m eigenvalue problem
in steps � and � can be treated by standard library subroutines
such as those in EISPACK
 Another important note is that in
step � one can replace eigenvectors by Schur vectors to get ap�
proximate Schur vectors �ui instead of approximate eigenvectors

Schur vectors yi can be obtained in a numerically stable way and�
in general� eigenvectors are more sensitive to rounding errors than
are Schur vectors


We can reformulate orthogonal projection methods in terms of
projection operators as follows
 De�ning P

K
to be the orthogonal

projector onto the subspace K� then the Galerkin condition ��
���
can be rewritten as

P
K
�A�u� ���u� � � � �� � C � �u � K

or�
P
K
A�u � ���u � �� � C � �u � K � ��
���
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Note that we have replaced the original problem ��
��� by an
eigenvalue problem for the linear transformation P

K
AjK which is

from K to K
 Another formulation of the above equation is

P
K
AP

K
�u � ���u � �� � C � �u � Cn ��
���

which involves the natural extension

Am � P
K
AP

K

of the linear operator A�m � P
K
AjK to the whole space
 In addition

to the eigenvalues and eigenvectors of A�m� Am has zero as a trivial
eigenvalue with every vector of the orthogonal complement of K�
being an eigenvector
 Equation ��
��� will be referred to as the
Galerkin approximate problem


The following proposition examines what happens in the par�
ticular case when the subspace K is invariant under A


Proposition ��� If K is invariant under A then every approxi�
mate eigenvalue 
 �right� eigenvector pair obtained from the or�
thogonal projection method onto K is exact�

Proof� An approximate eigenpair ��� �u is de�ned by

P
K
�A�u� ���u� � � �

where �u is a nonzero vector in K and �� � C
 If K is invariant
under A then A�u belongs to K and therefore P

K
A�u � A�u
 Then

the above equation becomes

A�u� ���u � � �

showing that the pair ��� �u is exact


An important quantity for the convergence properties of pro�
jection methods is the distance k�I � P

K
�uk� of the exact eigen�

vector u� supposed of norm �� from the subspace K
 This quantity
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plays a key role in the analysis of projection methods
 First� it is
clear that the eigenvector u cannot be well approximated from K
if k�I � P

K
�uk� is not small because we have

k�u� uk� � k�I � P
K
�uk��

The fundamental quantity k�I � P
K
�uk� can also be interpreted

as the sine of the acute angle between the eigenvector u and the
subspace K
 It is also the gap between the space K and the linear
span of u
 The following theorem establishes an upper bound
for the residual norm of the exact eigenpair with respect to the
approximate operator Am� using this angle


Theorem ��� Let 
 � kP
K
A�I�P

K
�k�� Then the residual norms

of the pairs ��P
K
u and �� u for the linear operator Am satisfy

respectively

k�Am � �I�P
K
uk� � 
k�I � P

K
�uk� ��
���

k�Am � �I�uk� �
q
�� � 
� k�I � P

K
�uk� � ��
���

Proof� For the �rst inequality we use the de�nition of Am to get

k�Am � �I�P
K
uk� � kP

K
�A� �I��u� �I � P

K
�u�k�

� kP
K
�A� �I��I � P

K
�uk�

� kP
K
�A� �I��I � P

K
��I � P

K
�uk�

� 
k�I � P
K
�uk� �

As for the second inequality we simply notice that

�Am � �I�u � �Am � �I�P
K
u� �Am � �I��I � P

K
�u

� �Am � �I�P
K
u� ��I � P

K
�u �

Using the previous inequality and the fact that the two vectors
on the right hand side are orthogonal to each other we get

k�Am � �I�uk�� � k�Am � �I�P
K
uk�� � j�j�k�I � P

K
�uk��

� �
� � j�j��k�I � P
K
�uk��

which completes the proof
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Note that 
 is bounded from above by kAk�
 A good ap�
proximation can therefore be achieved by the projection method
in case the distance k�I � P

K
�uk� is small� provided the approxi�

mate eigenproblem is well conditioned
 Unfortunately� in contrast
with the Hermitian case the fact that the residual norm is small
does not in any way guarantee that the eigenpair is accurate� be�
cause of potential di�culties related to the conditioning of the
eigenvalue


If we translate the inequality ��
��� into matrix form by ex�
pressing everything in an orthonormal basis V of K� we would
write P

K
� V V H and immediately obtain

k�V HAV � �I�V Huk� � 
k�I � V V H�uk��
which shows that � can be considered as an approximate eigen�
value for Bm � V HAV with residual of the order of �I �P

K
�u
 If

we scale the vector V Hu to make it of ��norm unity� and denote
the result by yu we can rewrite the above equality as

k�V HAV � �I�yuk� � 

k�I � P

K
�uk�

kP
K
uk� � 
 tan ��u�K��

The above inequality gives a more explicit relation between the
residual norm and the angle between u and the subspace K


���� The Hermitian Case

The approximate eigenvalues computed from orthogonal projec�
tion methods in the particular case where the matrix A is Her�
mitian� satisfy strong optimality properties which follow from
the Min�Max principle and the Courant characterization seen in
Chapter �
 These properties follow by observing that �Amx� x� is
the same as �Ax� x� when x runs in the subspace K
 Thus� if we
label the eigenvalues decreasingly� i
e
� �� � �� � � � � � �n� we
have

��� � max
x�K�x���

�P
K
AP

K
x� x�

�x� x�
� max

x�K�x���

�P
K
Ax�P

K
x�

�x� x�
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� max
x�K� x���

�Ax� x�

�x� x�
��
���

This is because P
K
x � x for any element in K
 Similarly� we can

show that
��m � min

x�K�x���

�Ax� x�

�x� x�
�

More generally� we have the following result


Proposition ��� The i�th largest approximate eigenvalue of a
Hermitian matrix A� obtained from an orthogonal projection
method onto a subspace K� satis�es�

��i � max
S�K

dim�S	�i

min
x�S�x���

�Ax� x�

�x� x�
� ��
���

As an immediate consequence we obtain the following corol�
lary


Corollary ��� For i � �� �� � � � � m the following inequality holds

�i � ��i � ��
���

Proof� This is because�

��i � max
S�K

dim�S	�i

min
x�S�x���

�Ax� x�

�x� x�
� max

S�Cn

dim�S	�i

min
x�S�x���

�Ax� x�

�x� x�
� �i �

A similar argument based on the Courant characterization re�
sults in the following theorem


Theorem ��� The approximate eigenvalue ��i and the correspond�
ing eigenvector �ui are such that

��� �
�A�u�� �u��

��u�� �u��
� max

x�K�x���

�Ax� x�

�x� x�
�
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and for i � �	

��i �
�A�ui� �ui�

��ui� �ui�
� max

x�K�x����

uH
�
x�����
uH

i��x��

�Ax� x�

�x� x�
��
���

One may suspect that the general bounds seen earlier for non�
Hermitian matrices may be improved for the Hermitian case
 This
is indeed the case
 We begin by proving the following lemma


Lemma ��� Let A be a Hermitian matrix and u an eigenvector
of A associated with the eigenvalue �� Then the Rayleigh quotient

 � 
A�PKu� satis�es the inequality

j�� 
j � kA� �Ikk�I � PK�uk
�
�

kP
K
uk��

� ��
���

Proof� From the equality

�A� �I�P
K
u � �A� �I��u� �I � P

K
�u� � ��A� �I��I � P

K
�u

and the fact that A is Hermitian we get�

j�� 
j � j��A� �I�P
K
u�P

K
u�

�P
K
u�P

K
u�

j

� j��A� �I��I � P
K
�u� �I � P

K
�u�

�P
K
u�P

K
u�

j �

The result follows from a direct application of the Cauchy�Schwartz
inequality


Assuming as usual that the eigenvalues are labeled decreas�
ingly� and letting 
� � 
A�PKu��� we can get from ��
��� that

� � �� � ��� � �� � 
� � kA� ��Ik�k�I � PK�u�k
�
�

kP
K
u�k��

�
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A similar result can be shown for the smallest eigenvalue
 We
can extend this inequality to the other eigenvalues at the price
of a little complication in the equations
 In what follows we will
denote by �Qi the sum of the spectral projectors associated with
the approximate eigenvalues ���� ���� � � � � ��i��
 For any given vector
x� �I � �Qi�x will be the vector obtained by orthogonalizing x
against the �rst i � � approximate eigenvectors
 We consider a
candidate vector of the form �I � �Qi�PKui in an attempt to use
an argument similar to the one for the largest eigenvalue
 This
is a vector obtained by projecting ui onto the subspace K and
then stripping it o� its components in the �rst i� � approximate
eigenvectors


Lemma ��
 Let �Qi be the sum of the spectral projectors associ�
ated with the approximate eigenvalues ���� ���� � � � � ��i�� and de�ne

i � 
A�xi�� where

xi �
�I � �Qi�PKui

k�I � �Qi�PKuik�
�

Then

j�i � 
ij � kA� �iIk� k �Qiuik�� � k�I � P
K
�uik��

k�I � �Qi�PKuik��
� ��
���

Proof� To simplify notation we set � � ��k�I � �Qi�PKuik�

Then we write�

�A� �iI�xi � �A� �iI��xi � �ui� �

and proceed as in the previous case to get�

j�i�
ij � j��A��iI�xi� xi��j � j��A��iI��xi��ui�� �xi��ui��j �
Applying Cauchy�Schwartz inequality to the above equation� we
get

j�i � 
ij � kA� �iIk�kxi � �uik�� �
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We can rewrite kxi � �uik�� as

kxi � �uik�� � ��k�I � �Qi�PKui � uik��
� ��k�I � �Qi��PKui � ui�� �Qiuik�� �

Using the orthogonality of the two vectors inside the norm bars�
this equality becomes

kxi � �uik�� � ��
�
k�I � �Qi��PKui � ui�k�� � k �Qiuik��

�
� ��

�
k�I � P

K
�uik�� � k �Qiuik��

�
�

This establishes the desired result


The vector xi has been constructed in such a way that it is orthog�
onal to all previous approximate eigenvectors �u�� � � � � �ui��
 We can
therefore exploit the Courant characterization ��
��� to prove the
following result


Theorem ��� Let �Qi be the sum of the spectral projectors asso�
ciated with the approximate eigenvalues ���� ���� � � � � ��i��� Then the
error between the i�th exact and approximate eigenvalues �i and
��i is such that

� � �i � ��i � kA� �iIk�k
�Qiuik�� � k�I � P

K
�uik��

k�I � �Qi�PKuik��
� ��
���

Proof� By ��
��� and the fact that xi belongs to K and is orthog�
onal to the �rst i � � approximate eigenvectors we immediately
get

� � �i � ��i � �i � 
i�

The result follows from the previous lemma


We point out that the above result is valid for i � �� provided
we de�ne �Q� � �
 The quantities k �Qiuik� represent the cosines
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of the acute angle between ui and the span of the previous ap�
proximate eigenvectors
 In the ideal situation this should be zero

In addition� we should mention that the error bound is semi�a�
priori� since it will require the knowledge of previous eigenvectors
in order to get an idea of the quantity k �Qiuik�


We now turn our attention to the eigenvectors


Theorem ��� Let 
 � kP
K
A�I�P

K
�k�� and consider any eigen�

value � of A with associated eigenvector u� Let �� be the approxi�
mate eigenvalue closest to � and � the distance between � and the
set of approximate eigenvalues other than ��� Then there exists an
approximate eigenvector �u associated with �� such that

sin ���u� �u�	 �
s
� �


�

��
sin ���u�K�	 ��
���

Proof�

K

u

z

�u

v cos�

w sin�

�
�

�

Figure ��� Projections of the eigenvector u onto K
and then onto �u


Let us de�ne the two vectors

v �
P
K
u

kP
K
uk� and w �

�I � P
K
�u

k�I � P
K
�uk� ��
���
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and denote by � the angle between u and P
K
u� as de�ned by

cos� � kP
K
uk�
 Then� clearly

u � v cos�� w sin��

which� upon multiplying both sides by �A� �I� leads to

�A� �I�v cos�� �A� �I�w sin� � � �

We now project both sides onto K� and take the norms of the
resulting vector to obtain

kP
K
�A� �I�vk� cos � � kP

K
�A� �I�wk� sin� � ��
���

For the�right�hand side note that

kP
K
�A� �I�wk� � kP

K
�A� �I��I � P

K
�wk�

� kP
K
A�I � P

K
�wk� � 
 � ��
���

For the left�hand�side� we decompose v further as

v � �u cos� � z sin��

in which �u is a unit vector from the eigenspace associated with ���
z is a unit vector in K that is orthogonal to �u� and � is the acute
angle between v and �u
 We then obtain�

P
K
�A� �I�v � P

K
�A� �I��cos��u� sin�z	

� �u���� �� cos� � P
K
�A� �I�z sin����
���

The eigenvalues of the restriction of P
K
�A��I� to the orthogonal

of �u are ��j � �� for j � �� �� � � �m� and ��j 	� ��
 Therefore� since z
is orthogonal to �u� we have

kP
K
�A� �I�zk� � ���� ��
���

The two vectors in the right hand side of ��
��� are orthogonal
and by ��
����

kP
K
�A� �I�vk�� � j��� �j� cos� � � sin� �kP

K
�A� �I�zk��

� �� sin� � ��
���
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To complete the proof we refer to Figure �
�
 The projection
of u onto �u is the projection onto �u of the projection of u onto
K
 Its length is cos� cos� and as a result the sine of the angle �
between u and �u is given by

sin� � � �� cos� � cos� �

� �� cos� � ��� sin� ��

� sin� �� sin� � cos� � � ��
���

Combining ��
���� ��
���� ��
��� we obtain that

sin� cos � � 


�
sin�

which together with ��
��� yields the desired result


This is a rather remarkable result given that it is so general

It tells us among other things that the only condition we need
in order to guarantee that a projection method will deliver good
approximation in the Hermitian case is that the angle between
the exact eigenvector and the subspace K be su�ciently small


As a consequence of the above result we can establish bounds
on eigenvalues that are somewhat simpler than those of Proposi�
tion �
�
 This results from the following proposition


Proposition ��� The eigenvalues � and �� in Theorem 
�� are
such that

j�� ��j � kA� �Ik� sin� ��u� �u� � ��
���

Proof� We start with the simple observation that �� � � �
��A� �I��u� �u�
 Letting � � �u� �u� � cos ��u� �u� we can write

��� � � ��A� �I���u� �u�� �u� � ��A� �I���u� �u�� �u� �u�

The result follows immediatly by taking absolute values� exploit�
ing the Cauchy�Schwartz inequality� and observing that k�u �
�uk� � sin ��u� �u�
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���� Oblique Projection Methods

In an oblique projection method we are given two subspaces L
and K and seek an approximation �u � K and an element �� of C
that satisfy the Petrov�Galerkin condition�

��A� ��I��u� v� � � � v � L � ��
���

The subspace K will be referred to as the right subspace and L
as the left subspace
 A procedure similar to the Rayleigh�Ritz
procedure can be devised by again translating in matrix form
the approximate eigenvector �u in some basis and expressing the
Petrov�Galerkin condition ��
���
 This time we will need two
bases� one which we denote by V for the subspace K and the
other� denoted by W � for the subspace L
 We assume that these
two bases are biorthogonal� i
e
� that �vi� wj� � �ij� or

WHV � I

where I is the identity matrix
 Then� writing �u � V y as before�
the above Petrov�Galerkin condition yields the same approximate
problem as ��
��� except that the matrix Bm is now de�ned by

Bm � WHAV�

We should however emphasize that in order for a biorthogonal
pair V�W to exist the following additional assumption for L and
K must hold


For any two bases V and W of K and L respectively�

det�WHV � 	� � � ��
���

In order to interpret the above condition in terms of operators
we will de�ne the oblique projector QL

K
onto K and orthogonal to

L
 For any given vector x in Cn� the vector QL
K
x is de�ned by��

�
QL
K
x � K

x�QL
K
x 
 L�
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Note that the vector QL
K
x is uniquely de�ned under the assump�

tion that no vector of the subspace L is orthogonal to K
 This
fundamental assumption can be seen to be equivalent to assump�
tion ��
���
 When it holds the Petrov�Galerin condition ��
���
can be rewritten as

QL
K
�A�u� ���u� � � ��
���

or

QL
K
A�u � ���u �

Thus� the eigenvalues of the matrix A are approximated by those
of A� � QL

K
AjK
 We can de�ne an extension Am of A�m analogous

to the one de�ned in the previous section� in many di�erent ways

For example introducing QL

K
before the occurrences of �u in the

above equation would lead to Am � QL
K
AQL

K

 In order to be able

to utilize the distance k�I � P
K
�uk� in a�priori error bounds a

more useful extension is

Am � QL
K
AP

K
�

With this notation� it is trivial to extend the proof of Propo�
sition �
� to the oblique projection case
 In other words� when K
is invariant� then no matter which left subspace L we choose� the
oblique projection method will always extract exact eigenpairs


We can establish the following theorem which generalizes The�
orem �
� seen for the orthogonal projection case


Theorem ��� Let 
 � kQL
K
�A � �I��I � P

K
�k�� Then the fol�

lowing two inequalities hold	

k�Am � �I�P
K
uk� � 
k�I � P

K
�uk� ��
���

k�Am � �I�uk� �
q
j�j� � 
� k�I � P

K
�uk� � ��
���



Tools of Spectral Approximation ���

Proof� For the �rst inequality� since the vector P
K
y belongs to

K we have QL
K
P
K
� P

K
and therefore

�Am � �I�P
K
u � QL

K
�A� �I�P

K
u

� QL
K
�A� �I��P

K
u� u�

� �QL
K
�A� �I��I � P

K
�u �

Since �I � P
K
� is a projector we now have

�Am � �I�P
K
u � �QL

K
�A� �I��I � P

K
��I � P

K
�u�

Taking Euclidean norms of both sides and using the Cauchy�
Schwartz inequality we immediately obtain the �rst result


For the second inequality� we write

�Am � �I�u � �Am � �I� �P
K
u� �I � P

K
�u	

� �Am � �I�P
K
u� �Am � �I��I � P

K
�u �

Noticing that Am�I � PK� � � this becomes

�Am � �I�u � �Am � �I�P
K
u� ��I � P

K
�u �

Using the orthogonality of the two terms in the right hand side�
and taking the Euclidean norms we get the second result


In the particular case of orthogonal projection methods� QL
K
is

identical with P
K
� and we have kQL

K
k� � �
 Moreover� the term 


can then be bounded from above by kAk�
 It may seem that since
we obtain very similar error bounds for both the orthogonal and
the oblique projection methods� we are likely to obtain similar
errors when we use the same subspace
 This is not the case in
general
 One reason is that the scalar 
 can no longer be bounded
by kAk� since we have kQL

K
k� � � and kQL

K
k� is unknown in gen�

eral
 In fact the constant 
 can be quite large
 Another reason
which was pointed out earlier is that residual norm does not pro�
vide enough information
 The approximate problem can have a
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much worse condition number if non�orthogonal transformations
are used� which may lead to poorer results
 This however is only
based on intuition as there are no rigorous results in this direction


The question arises as to whether there is any need for oblique
projection methods since dealing with oblique projectors may be
numerically unsafe
 Methods based on oblique projectors can
o�er some advantages
 In particular they may allow to compute
approximations to left as well as right eigenvectors simultaneously

There are methods based on oblique projection techniques that
require also far less storage than similar orthogonal projections
methods
 This will be illustrated in Chapter VI


�� Chebyshev Polynomials

Chebyshev polynomials are crucial in the study of the Lanczos
algorithm and more generally of iterative methods in numerical
linear algebra� such as the conjugate gradient method
 They are
useful both in theory� when studying convergence� and in practice�
as a means of accelerating single vector iterations or projection
processes


���� Real Chebyshev Polynomials

The Chebyshev polynomial of the �rst kind of degree k is de�ned
by

Ck�t� � cos�k cos���t�	 for � � � t � � � ��
���

That this is a polynomial with respect to t can be easily shown
by induction from the trigonometric relation

cos��k � ���	 � cos��k � ���	 � � cos � cos k��

and the fact that C��t� � t� C��t� � �
 Incidentally� this also
shows the important three�term recurrence relation

Ck���t� � � tCk�t�� Ck���t� �
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It is important to extend the de�nition ��
��� to cases where jtj �
� which is done with the following formula�

Ck�t� � cosh �k cosh���t�	� jtj � � � ��
���

This is readily seen by passing to complex variables and using the
de�nition cos � � �ei��e�i����� As a result of ��
��� we can derive
the expression�

Ck�t� �
�

�

��
t�

p
t� � �

�k
�
�
t �

p
t� � �

��k	
� ��
���

which is valid for jtj � � but can also be extended to the case
jtj	�
 As a result� one may use the following approximation for
large values of k

Ck�t�
�
	

�

�

�
t�

p
t� � �

�k
for jtj � � � ��
���

In what follows we denote by Pk the set of all polynomials of
degree k
 An important result from approximation theory� which
we state without proof� is the following theorem


Theorem ��� Let ��� �	 be a non�empty interval in R and let 

be any real scalar such with 
 � �� Then the minimum

min
p� Pk �p��	��

max
t������

jp�t�j

is reached by the polynomial

�Ck�t� �
Ck

�
� � � t��

���

�
Ck

�
� � � ���

���

� �

For a proof see ���	
 The maximum of Ck for t in ���� �	 is �
and as a corollary we have

min
p� Pk� p��	��

max
t������

jp�t�j � �

jCk�� � � ���
���

�j �
�

jCk��
���
���

�j �

in which 
 � ��� ���� is the middle of the interval
 Clearly� the
results can be slightly modi�ed to hold for the case where 
 � ��
i
e
� when 
 is to the left of the interval
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���� Complex Chebyshev Polynomials

The standard de�nition given in the previous section for Cheby�
shev polynomials of the �rst kind� see equation ��
���� extends
without di�culty to complex variables
 First� as was seen be�
fore� when t is real and jtj � � we can use the alternative de��
nition� Ck�t� � cosh�k cosh���t�	� � � jtj � More generally� one
can unify these de�nitions by switching to complex variables and
writing

Ck�z� � cosh�k��� where cosh��� � z �

De�ning the variable w � e	 � the above formula is equivalent to

Ck�z� �
�

�
�wk � w�k	 where z �

�

�
�w � w��	� ��
���

We will use the above de�nition for Chebyshev polynomials in
C
 Note that the equation �

�
�w � w��� � z has two solutions w

which are inverses of each other� and as a result the value of Ck�z�
does not depend on which of these solutions is chosen
 It can be
veri�ed directly that the Ck
s de�ned by the above equations are
indeed polynomials in the z variable and that they satisfy the
three term recurrence

Ck���z� � � zCk�z�� Ck���z�� ��
���

with C��z� � � and C��z� � z

As is now explained� Chebyshev polynomials are intimately

related to ellipses in the complex plane
 Let C
 be the circle
of center the origin and radius �
 Then the so�called Joukowski
mapping

J�w� �
�

�
�w � w��	

transforms C
 into an ellipse of center the origin� foci ��� � and
major semi�axis �

�
�� � ���	 and minor semi�axis �

�
j� � ���j
 This

is illustrated in Figure �
�
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�

�

�e�w�

�m�w�

w � �e
i�

�

�
J�w�

�

�

�e�z�

�m�z�

z � w�w
��

��

Figure ��
 The Joukowski mapping transforms a cir�
cle into an ellipse in the complex plane


There are two circles which have the same image by the map�
ping J�w�� one with the radius � and the other with the radius
���
 So it su�ces to consider those circles with � � �
 Note that
the case � � � is a degenerate case in which the ellipse E��� �����
reduces the interval ���� �	 traveled through twice


One important question we now ask is whether or not a min�
max result similar to the one of Theorem �
� holds for the complex
case
 Here the maximum of jp�z�j is taken over the ellipse bound�
ary and 
 is some point not enclosed by the ellipse
 A ���� paper
by Clayton ���	 was generally believed for quite some time to have
established the result� at least for the special case where the ellipse
has real foci and 
 is real
 It was recently shown by Fischer and
Freund that in fact Clayton
s result was incorrect in general ���	

On the other hand� Chebyshev polynomials are asymptotically
optimal and in practice that is all that is needed


To show the asymptotic optimality� we start by stating a
lemma due to Zarantonello� which deals with the particular case
where the ellipse reduces to a circle
 This particular case is im�
portant in itself


Lemma ��� �Zarantonello	 Let C��� �� be a circle of center the
origin and radius � and let 
 a point of C not enclosed by C��� ���
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Then�

min
p� Pk� p��	��

max
z � C���
	

jp�z�j �

�
�

j
j

�k

� ��
���

the minimum being achieved for the polynomial �z�
�k�

Proof� See reference ����	 for a proof


Note that by changing variables� shifting and rescaling the
polynomial� we also get for any circle centered at c and for any
scalar 
 such that j
j � ��

min
p� Pk p��	��

max
z � C�c�
	

jp�z�j �

�
�

j
 � cj

�k

We now consider the general case of an ellipse centered at the
origin� with foci ���� and semi�major axis a� which can be consid�
ered as mapped by J from the circle C��� ��� with the convention
that � � �
 We denote by E
 such an ellipse


Theorem ��� Consider the ellipse E
 mapped from C��� �� by
the mapping J and let 
 any point in the complex plane not en�
closed by it� Then

�k

jw�jk � min
p� Pk p��	��

max
z � E�

jp�z�j � �k � ��k

jwk
� � w�k� j ��
���

in which w� is the dominant root of the equation J�w� � 
�

Proof� We start by showing the second inequality
 Any poly�
nomial p of degree k satisfying the constraint p�
� � � can be
written as�

p�z� �

Pk
j�� �jz

jPk
j�� �j


j
�
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A point z on the ellipse is transformed by J from a certain w in
C��� ��
 Similarly� let w� be one of the two inverse transforms of

 by the mapping� namely the one with largest modulus
 Then�
p can be rewritten as

p�z� �

Pk
j�� �j�w

j � w�j�Pk
j�� �j�w

j
� � w�j� �

� ��
���

Consider the particular polynomial obtained by setting �k � �
and �j � � for j 	� k�

p
�z� �
wk � w�k

wk
� � w�k�

which is a scaled Chebyshev polynomial of the �rst kind of degree
k in the variable z
 It is not too di�cult to see that the maximum
modulus of this polynomial is reached in particular when w � �ei�

is real� i
e
� when w � �
 Thus�

max
z�E�

jp
�z�j � �k � ��k

jwk
� � w�k� j

which proves the second inequality

To prove the left inequality� we rewrite ��
��� as

p�z� �

�
w�k

w�k�

� Pk
j�� �j�w

k�j � wk�j�Pk
j�� �j�w

k�j
� � wk�j

� �

and take the modulus of p�z��

jp�z�j � ��k

jw�j�k








Pk

j�� �j�w
k�j � wk�j�Pk

j�� �j�w
k�j
� � wk�j

� �







 �
The polynomial in w of degree �k inside the large modulus bars
in the right�hand�side is such that its value at w� is one
 By
Lemma �
�� the modulus of this polynomial over the circle C��� ��
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is not less than ���jw�j��k� i
e
� for any polynomial� satisfying the
constraint p�
� � � we have�

max
z� E�

jp�z�j � ��k

jw�j�k
��k

jw�j�k �
�k

jw�jk �

This proves that the minimum over all such polynomials of the
maximum modulus on the ellipse E
 is � ���jw�j�k


The di�erence between the left and right bounds in ��
���
tends to zero as k increases to in�nity
 Thus� the important point
made by the theorem is that� for large k� the Chebyshev polyno�
mial

p
�z� �
wk � w�k

wk
� � w�k�

� where z �
w � w��

�

is close to the optimal polynomial
 In other words these polyno�
mials are asymptotically optimal


For a more general ellipse centered at c� and with focal dis�
tance d� a simple change of variables shows that the near�best
polynomial is given by

Ck

�
z � c

d

�
�

We should point out that an alternative result� which is more
complete� has been proven by Fischer and Freund in ���	


Problems

P���� What are the eigenvalues and eigenvectors of 
A��I���� What
are all the shifts � that will lead to a convergence towards a given
eigenvalue 	�

P���� Consider a real nonsymmetric matrix A� The purpose of this
exercise is to develop a generalization of the power method that can
handle the case where the dominant eigenvalue is complex 
i�e�� we have
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a complex conjugate pair of dominant eigenvalues�� Show that by a
projection process onto two successive iterates of the power method
one can achieve convergence towards the dominant pair of eigenvalues
�Consider the diagonalizable case only�� Without giving a proof� state
what the rate of convergence toward the pair of complex conjugate
eigenvectors should be� Develop a simple version of a corresponding
algorithm and then a variation of the algorithm that orthonormalizes
two successive iterates at every step� i�e�� starting with a vector x of
�	norm unity� the iterates are as follows�

xnew ��
�x

k�xk� where �x �� Axold � 
Axold� xold�xold �

Does the orthogonalization have to be done at every step�

P���� By following a development similar to that subsection ���� �nd
the v vector for Wielandt de�ation� which minimizes the condition
number for A�� among all vectors in the span of u�� w�� Show again
that the choice v � u� is nearly optimal when 	��	� is small relative
to ��

P���� Consider the generalized eigenvalue problem Ax � 	Bx� How
can one generalize the power method� The shifted power method�
and the shift	and	invert power method�

P���� Assume that all the eigenvalues of a matrix A are real and that
one uses the shifted power method for computing the largest� i�e�� the
rightmost eigenvalue of a given matrix� What are all the admissible
shifts� i�e�� those that will lead to convergence toward the rightmost
eigenvalue� Among all the admissible choices which one leads to the
best convergence rate�

P���� Consider a de�ation technique which would compute the eigen	
values of the matrix

A� � 
I �QjQ
H
j �A

in which Qj � �q�� q�� � � � � qj � are previously computed Schur vectors�
What are the eigenvalues of the de�ated matrix A�� Show that an
eigenvector of A� is a Schur vector for A� The advantage of this
technique is that there is no need to select shifts �j� What are the
disadvantages if any�
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P���	 Show that in example ��� any linear combination of the vectors
u� and w� is in fact optimal�

P���
 Nothing was said about the left eigenvector �w� of the de�ated
matrix A� in Section ���� Assuming that the matrixA is diagonalizable
�nd an eigenvector �w� of A� associated with the eigenvalue 	� � ��
�Hint� Express the eigenvector in the basis of the left eigenvectors
of A�� How can this be generalized to the situation where A is not
diagonalizable�

P���� Assume that the basis V of the subspace K used in an or	
thogonal projection process is not orthogonal� What matrix problem
do we obtain if we translate the Galerkin conditions using this ba	
sis� Same question for the oblique projection technique� i�e�� assuming
that V�W does not form a bi	orthogonal pair� Ignoring the cost of
the small m	dimensional problems� how do the computational costs
compare� What if we include the cost of the orthonormalization 
by
modi�ed Gram	Schmidt� for the approach which uses orthogonal bases

Assuming that the basis V is obtained from orthonormalizing a set
of m basis vectors��

P����� Let A be Hermitian and let �ui� �uj two Ritz eigenvectors as	
sociated with two di�erent eigenvalues �	i� �	j respectively� Show that

A�ui� �uj� � �	j�ij �

P����� Prove from the de�nition 
����� that the Ck�s are indeed poly	
nomials in z and that they satisfy the three	term recurrence 
������

Notes and References� Much of the material on projection methods
presented in this chapter is based on the papers ����
 ���� and the section
on de�ation procedures is from ����� and some well
known results in Wilkin

son ������ Suggested additional reading on projection methods are Chatelin
���� and Krasnoselskii et al� ����� A good discussion of Chebyshev polyno

mials in the complex plane is given in the book by Rivlin ���	�� De�ation
for non Hermitian eigenvalue problems is not that much used in the liter

ature� I found Schur
Wielandt and related de�ation procedures �based on
Schur vectors rather than eigenvectors� to be essential in the design of robust
eigenvalue algorithms� �



Chapter V

Subspace Iteration

Among the best known methods for solving large sparse eigen�
value problems� the subspace iteration algorithm is undoubtedly
the simplest
 This method can be viewed as a block generalization
of the power method
 Although the method is not competitive
with other projections methods to be covered in later chapters�
it still is one of the most important methods used in structural
engineering
 It also constitutes a good illustration of the material
covered in the previous chapter
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�� Simple Subspace Iteration

The original version of subspace iteration was introduced by Bauer
under the name of Treppeniteration �staircase iteration�
 Bauer�s
Treppeniteration Bauer
s method consists of starting with an ini�
tial system ofm vectors forming an n�mmatrixX� � �x�� � � � � xm	
and computing the matrix

Xk � AkX�� ��
��

for a certain power k
 If we normalized the column vectors sepa�
rately in the same manner as for the power method� then in typical
cases each of these vectors will converge to the same eigenvector
associated with the dominant eigenvalue
 Thus the systemXk will
progressively loose its linear independence
 The idea of Bauer
s
method is to reestablish linear independence for these vectors by
a process such as the LR or the QR factorization
 Thus� if we use
the more common QR option� we get the following algorithm


Algorithm ��� Simple Subspace Iteration

�� Start
 Choose an initial system of vectorsX� � �x�� � � � � xm	�

�� Iterate
 Until convergence do�

�a	 Compute Xk �� AXk��

�b	 Compute the QR factorization Xk � QR of Xk� and
set Xk �� Q�

This algorithm can be viewed as a direct generalization of
the power method seen in the previous Chapter
 Step ���b� is a
normalization process that is much similar to the normalization
used in the power method� and just as for the power method
there are many possible normalizations that can be used
 An
important observation is that the subspace spanned by the vectors
Xk is the same as that spanned by AkX�
 Since the cost of ���b�
can be high� it is natural to orthonormalize as infrequently as
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possible� i
e
 to perform several steps at once before performing
an orthogonalization
 This leads to the following modi�cation


Algorithm ��
 Multiple Step Subspace Iteration

�� Start
 Choose an initial system of vectorsX � �x�� � � � � xm	�
Choose an iteration parameter iter�

�� Iterate
 Until convergence do�

�a	 Compute Z �� AiterX�

�b	 Orthonormalize Z� Copy resulting matrix onto X�

�c	 Select a new iter�

We would like to make a few comments concerning the choice
of the parameter iter
 The best iter will depend on the conver�
gence rate
 If iter is too large then the vectors of Z in ���a�
may become nearly linear dependent and the orthogonalization
in ���b� may cause some di�culties
 Typically an estimation on
the speed of convergence is used to determine iter
 Then iter is
de�ned in such a way that� for example� the fastest converging
vector� which is the �rst one� will have converged to within a cer�
tain factor� e
g
� the square root of the machine epsilon� i
e
� the
largest number � that causes rounding to yield � � � �� � on a
given computer


Under a few assumptions the column vectors of Xk will con�
verge !in direction" to the Schur vectors associated with the m
dominant eigenvalues ��� � � � � �m
 To formalize this peculiar no�
tion of convergence� a form of which was seen in the context of
the power method� we will say that a sequence of vectors xk con�
verges essentially to a vector x if there exists a sequence of signs
ei�k such that the sequence ei�kxk converges to x


Theorem ��� Let ��� � � � � �m be the m dominant eigenvalues of
A labeled in decreasing order of magnitude and assume that j�ij �
j�i��j� � � i � m� Let Q � �q�� q�� � � � � qm	 be the Schur vectors
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associated with �j� j � �� � � � � m and Pi be the spectral projector
associated with the eigenvalues ��� � � � � �i� Assume that

rank �Pi�x�� x�� � � � � xi	� � i� for i � �� �� � � � � m �

Then the i�th column of Xk converges essentially to qi� for i �
�� �� � � � � m�

Proof� Let the initial system X� be decomposed as

X� � PmX� � �I � Pm�X� � QG� �WG� ��
��

where W is an n � �n � m� matrix whose column vectors form
some basis of the invariant basis �I � Pm�C

n and G� is a certain
�n�m��m matrix
 We know that there exists an m�m upper
triangular matrix R� and an �n �m� � �n �m� matrix R� such
that

AQ � QR� � AW � WR� � ��
��

The column vectors of Xk are obtained by orthonormalizing the
system Zk � AkX�
 By assumption� the system of column vectors
PmX� is nonsingular and therefore G� is nonsingular
 Applying
��
�� we get

AkX� � Ak�QG� �WG�	

� QRk
�G� �WRk

�G�

� �Q �WRk
�G�G

��
� R�k� 	Rk

�G�

The term Ek � WRk
�G�G

��
� R�k tends to zero because the spectral

radius of R��� is equal to ��j�mj while that of R� is j�m��j
 Hence�

AkX�G
��
� � �Q � Ek	R

k
�

with limk��Ek � �
 Using the QR decomposition of the matrix
Q� Ek�

Q� Ek � Q�k	R�k	�



Subspace Iteration ���

we obtain
AkX�G

��
� � Q�k	R�k	Rk

��

Since Ek converges to zero� it is clear that R�k	 converges to the
identity matrix while Q�k	 converges to Q� and because the QR
decomposition of a matrix is unique up to scaling constants� we
have established that the Q matrix in the QR decomposition of
the matrix AkX�G

��
� converges essentially to Q
 Notice that

the span of AkX�G
��
� is identical with that of Xk
 As a result

the orthogonal projector P�k	
m onto spanfXkg will converge to the

orthogonal projector Pm onto spanfQg

In what follows we denote by �X	j the matrix of the �rst j vec�

tor columns of X
 To complete the proof� we need to show that
each column converges to the corresponding column vector of Q

To this end we observe that the above proof extends to the case
where we consider only the �rst j columns of Xk� i
e
� the j �rst
columns of Xk converge to a matrix that spans the same subspace
as �Q	j
 In other words� if we let Pj be the orthogonal projector

on spanf�Q	jg and P�k	
j the orthogonal projector on spanf�Xk	jg

then we have P�k	
j � Pj for j � �� �� � � � � m
 The proof is now

by induction
 When j � �� we have the obvious result that the
�rst column of Xk converges essentially to q�
 Assume that the
columns � through i of Xk converge essentially to q�� � � � � qi
 Con�
sider the last column x

�k	
i�� of �Xk	i��� which we express as

x
�k	
i�� � P�k	

i��x
�k	
i�� � P�k	

i x
�k	
i�� � �P�k	

i�� � P�k	
i �x

�k	
i�� �

The �rst term in the right hand side is equal to zero because by
construction x

�k	
i�� is orthogonal to the �rst i columns of �Xk	i��


Hence�
x
�k	
i�� � �P�k	

i�� � P�k	
i �x

�k	
i��

and by the above convergence results on the projectors P�k	
j we

see that P�k	
i�� � P�k	

i converges to the orthogonal projector onto
the span of the single vector qi��
 This is because

Pi�� � Pi � Qi��Q
H
i�� �QiQ

H
i � qi��q

H
i�� �
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Therefore we may write x
�k	
i�� � qi��q

H
i��x

�k	
i����k where �k converges

to zero
 Since the vector x
�k	
i�� is of norm unity� its orthogonal

projection onto qi�� will essentially converge to qi��


The proof indicates that the convergence of each column vector
to the corresponding Schur vector is governed by the convergence
factor j�i����ij
 In addition� we have also proved that each or�

thogonal projector P�k	
i onto the �rst i columns of Xk converges

under the assumptions of the theorem


�� Subspace Iteration with Projection

In the subspace iteration with projection method the column vec�
tors obtained from the previous algorithm are not directly used as
approximations to the Schur vectors
 Instead they are employed
in a Rayleigh�Ritz process to get better approximations
 In fact
as was seen before� the Rayleigh�Ritz approximations are optimal
in some sense in the Hermitian case and as a result it is sensible to
use a projection process whenever possible
 This algorithm with
projection is as follows


Algorithm ��� Subspace Iteration with Projection

�� Start
 Choose an initial system of vectors X � �x�� � � � � xm	
and an initial iteration parameter iter�

�� Iterate
 Until convergence do�

�a	 Compute �Z � AiterXold�

�b	 Orthonormalize �Z into Z�

�c	 Compute B � ZHAZ and use the QR algorithm to
compute the Schur vectors Y � �y�� � � � � ym	 of B�

�d	 Compute Xnew � ZY �

�e	 Test for convergence and select a new iteration param�
eter iter�
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There are many implementation details which are omitted for
the sake of clarity
 Note that there is another version of the
algorithm which uses eigenvectors instead of Schur vectors �in
Step ���c��
 These two versions are obviously equivalent when A
is Hermitian


Let Sk be the subspace spanned by Xk and let us denote by
Pk the orthogonal projector onto the subspace Sk
 Assume that
the eigenvalues are ordered in decreasing order of magnitude and
that�

j��j � j��j � j��j � � � � j�mj � j�m��j � � � � � j�nj �

Again ui denotes an eigenvector of A of norm unity associated
with �i
 The spectral projector associated with the invariant sub�
space associated with ��� � � � � �m will be denoted by P 
 We will
now prove the following theorem


Theorem ��
 Let S� � spanfx�� x�� � � � � xmg and assume that
S� is such that the vectors fPxigi�������m are linearly independent�
Then for each eigenvector ui of A� i � �� � � � � m� there exists a
unique vector si in the subspace S� such that Psi � ui� Moreover�
the following inequality is satis�ed

k�I � Pk�uik� � kui � sik�
�




�m��

�i






� �k

�k

� ��
��

where �k tends to zero as k tends to in�nity�

Proof� By their assumed linear independence� the vectors Pxj�
form a basis of the invariant subspace PCn and so the vector ui�
which is a member of this subspace� can be written as

ui �
mX
j��

�jPxj � P
mX
j��

�jxj � Psi�

The vector si is such that

si � ui � w� ��
��
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where w � �I �P �si
 Next consider the vector y of Sk de�ned by
y � � �

�i
�kAksi
 We have from ��
�� that

y � ui �
�
�

�i

�k
Akw � ��
��

Denoting byW the invariant subspace corresponding to the eigen�
values �m��� � � � � �n� and noticing that w is in W � we clearly have

y � ui �
�
�

�i

�k
�AjW 	kw�

Hence�

kui � yk� �






�
�

�i
AjW

	k





�

kwk� � ��
��

Since the eigenvalues of AjW are �m��� �m��� � � � � �n the spectral
radius of � �

�i
AjW 	 is simply j�m����ij and from Corollary �
� of

Chapter I� we have�







�
�

�i
AjW

	k





�

�

�




�m��

�i






� �k

�k
� ��
��

where �k tends to zero as k ��
 Using the fact that

k�I � Pk�uik� � min
y�Sk

ky � uik�

together with inequality ��
�� and equality ��
�� yields the desired
result ��
��


We can be a little more speci�c about the sequence �k of the
theorem by using the inequality

kBkk� � ��kk���� ��
��

where B is any matrix� � its spectral radius� � the dimension of
its largest Jordan block� and � some constant independent on k�
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see Exercise P��
� as well as Householder
s book ���	
 Without
loss of generality we assume that � � �


Initially� consider the case where A is diagonalizable
 Then
� � �� and by replacing ��
�� in ��
�� we observe that ��
�� sim�
pli�es into

k�I � Pk�uik� � �kui � sik�





�m��

�i







k

� ��
���

Still in the diagonalizable case� it is possible to get a more explicit
result by expanding the vector si in the eigenbasis of A as

si � ui �
nX

i�m��

�juj�

Letting � �
Pn

i�m�� j�jj� we can reproduce the proof of the above
theorem to obtain

k�I � Pk�uik� � ��






�m��

�i







k

� ��
���

When A is not diagonalizable� then from comparing ��
�� and
��
�� we can bound �k from above as follows�

�k �





�m��

�i






 ����kk����	�k � ��

which con�rms that �k tends to zero as k tends to in�nity

Finally� concerning the assumptions of the theorem� it can be

easily seen that the condition that fPxjgj�������r form an indepen�
dent system of vectors is equivalent to the condition that

det�UHS�	 	� ��

in which U is any basis of the invariant subspace PCn
 This con�
dition constitutes a generalization of a similar condition required
for the convergence of the power method
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�� Practical Implementations

There are a number of implementation details that enhance the
performance of the simple methods described above
 The �rst of
these is the use of locking� a form of de�ation� which exploits the
inequal convergence rates of the di�erent eigenvectors
 In addi�
tion� the method is rarely used without some form of acceleration

Similarly to the power method the simplest form of acceleration�
is to shift the matrix to optimize the convergence rate for the
eigenvalue being computed
 However� there are more elaborate
techniques which will be brie�y discussed later


���� Locking

Because of the di�erent rates of convergence of each of the ap�
proximate eigenvalues computed by the subspace iteration� it is
a common practice to extract them one at a time and perform a
form of de�ation
 Thus� as soon as the �rst eigenvector has con�
verged there is no need to continue to multiply it by A in the sub�
sequent iterations
 Indeed we can freeze this vector and work only
with the vectors q�� � � � � ���qm
 However� we will still need to per�
form the subsequent orthogonalizations with respect to the frozen
vector q� whenever such orthogonalizations are needed
 The term
used for this strategy is locking 
 It was introduced by Jennings
and Stewart ���	
 Note that acceleration techniques and other im�
provements to the basic subspace iteration desribed in Section �
can easily be combined with locking


The following algorithm describes a practical subspace iter�
ation with de�ation �locking� for computing the nev dominant
eigenvalues


Algorithm ��� Subspace Iteration with Projection and
De�ation

�� Start
 Choose an initial system of vectorsX �� �x�� � � � � xm	
and an initial iteration parameter iter� Set j �� ��
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�� Eigenvalue loop
 While j � nev do�

�a	 Compute �Z � �q�� q�� � � � � qj��� A
iterX	 �

�b	 Orthonormalize the column vectors of �Z �starting at
column j	 into Z�

�c	 Update B � ZHAZ and compute the Schur vectors
Y � �yj� � � � � ym	 of B associated with the eigenvalues
�j� � � � � �m�

�d	 Test the eigenvalues �j� � � � � �m for convergence� Let
iconv the number of newly converged eigenvalues� Ap�
pend the iconv corresponding Schur vectors to Q �
�q�� ����� qj��	 and set j �� j � iconv�

�e	 Compute X �� Z�yj� yj��� � � � � ym	�

�f	 Compute a new iteration parameter iter�

Example ��� Consider the matrix Mark
��� described in Chapter
II and used in the test examples of Chapter IV� We tested a version
of the algorithm just described to compute the three dominant eigen	
values of Mark
���� In this test we took m � �� and started with an
initial set of vectors obtained from orthogonalizing v�Av� ���� Amv� in
which v is a random vector� Table ��� shows the results� Each hori	
zontal line separates an outer loop of the algorithm 
corresponding to
step 
�� in algorithm ����� Thus� the algorithm starts with iter � �
and in the �rst iteration 
requiring 
� matrix	vector products� no new
eigenvalue has converged� We will need three more outer iterations

requiring each ��� matrix	vector products� to achieve convergence
for the two dominant eigenvalues ��� �� Another outer iteration is
needed to compute the third eigenvalue� Note that each projection
costs �� additional matrix by vector products� �� for computing the
C matrix and � for the residual vectors�
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Mat�vec
s �e��� �m��� Res
 Norm
�� �
����������D��� �
� �
���D���

��
����������D��� �
� �
���D���
��
����������D��� �
� �
���D���

��� ��
����������D��� �
� �
���D���
�
����������D��� �
� �
���D���
�
����������D��� �
� �
���D���

��� ��
����������D��� �
� �
���D���
�
����������D��� �
� �
���D���
�
����������D��� �
� �
���D���

��� ��
����������D��� �
� �
���D���
�
����������D��� �
� �
���D���
�
����������D��� �
� �
���D���

��� ��
����������D��� �
� �
���D���
�
����������D��� �
� �
���D���
�
����������D��� �
� �
���D���

Table ��� Convergence of subspace iteration with pro�
jection for computing the three dominant eigenvalues
of A � Mark����


���� Linear Shifts

Similarly to the power method� there are advantages in working
with the shifted matrix A��I instead of A� where � is a carefully
chosen shift
 In fact since the eigenvalues are computed one at a
time� the situation is very similar to that of the power method

Thus� when the spectrum is real� and the eigenvalues are ordered
decreasingly� the best possible � is

� �
�

�
��m�� � �n�

which will put the middle of the unwanted part of the spectrum
at the origin
 Note that when de�ation is used this is independent
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of the eigenvalue being computed
 In addition� we note one im�
portant di�erence with the power method� namely that eigenvalue
estimates are now readily available
 In fact� it is common practice
to take m � nev� the number of eigenvalues to be computed� in
order to be able to obtain valuable estimates dynamically
 These
estimates can be used in various ways to accelerate convergence�
such as when selecting shifts as indicated above� or when using
some of the more sophisticated preconditioning techniques men�
tioned in the next section


���� Preconditionings

Preconditioning is especially important for subspace iteration�
since the unpreconditioned iteration may be unacceptably slow
in some cases
 Although we will cover preconditioning in more
detail in Chapter VIII� we would like to mention here the main
ideas used to precondition the subspace iteration



 Shift�and�invert
 This consists of working with the matrix
�A � �I��� instead of A
 The eigenvalues near � will con�
verge fast



 Polynomial acceleration
 The standard method used is to
replace the power Aiter in the usual subspace iteration algo�
rithm by a polynomial Tm��A � �I���	 in which Tm is the
Chebyshev polynomial of the �rst kind of degree m


With either type of preconditioning subspace iteration may
be a reasonably e�cient method that has the advantage of being
easy to code and understand
 Some of the methods to be seen in
the next Chapter are often preferred however� because they tend
to be more economical
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Problems

P���� In Bauer�s original Treppeniteration� the linear independence
of the vectors in AkX� are preserved by performing its LU decompo	
sition� Thus�

�X � AkX � �X � LkUk� X �� Lk�

in which Lk is an n �m matrix with its upper m � m corner being
a unit lower triangular matrix� and Uk is an m�m upper triangular
matrix� Extend the main convergence theorem of the corresponding
algorithm� for this case�

P���� Assume that the matrix A is real and the eigenvalues 	m� 	m��

forms a complex conjugate pair� If subspace iteration with de�ation

Algorithm ���� is used� there will be a di�culty when computing the
last eigenvalue� Provide a few possible modi�cations to the algorithm
to cope with this case�

P���� Write a modi�cation of Algorithm ��� which incorporates a
dynamic shifting strategy� Assume that the eigenvalues are real and
consider both the case where the rightmost or the leftmost eigenvalues
are wanted�

P���� Let A be a matrix whose eigenvalues are real and assume that
the subspace iteration algorithm 
with projection� is used to compute
some of the eigenvalues with largest real parts of A� The question
addressed here is how to get the best possible iteration parameter
iter� We would like to choose iter in such a way that in the worst case�
the vectors of X will loose a factor of

p
� in their linear dependence�

in which � is the machine accuracy� How can we estimate such an
iteration parameter iter from quantities derived from the algorithm�
You may assume that m is su�ciently large compared with nev 
how
large should it be���

P���� Generalize the result of the previous exercise to the case where
the eigenvalues are not necessarily real�

P���� Using the Jordan Canonical form� show that for any matrix
B�

kBkk� � 

kk���� 
�����
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where 
 is the spectral radius of B� � the dimension of its largest
Jordan block� and 
 some constant�

P���	 Implement a subspace iteration with projection to compute the
eigenvalues with largest modulus of a large sparse matrix� Implement
locking and linear shifts�

Notes and References� An early reference on Bauer�s Treppeniteration

in addition to the original paper by Bauer ���
 is Householder�s book ����� See
also the paper by Rutishauser ����� and by Clint and Jennings �	�� as well as
the book by Bath�e and Wilson ��� which all specialize to symmetric matrices�
A computer code for the symmetric real case was published in Wilkinson and
Reinsch�s handbook ����� but unlike most other codes in the handbook
 never
became part of the Eispack library� Later
 some work was done to develop
computer codes for the non
Hermitian case� Thus
 a �lop
sided� version of
Bauer�s treppeniteration based on orthogonal projection method rather than
oblique projection was introduced by Jennings and Stewart ���� and a com

puter code was also made available ����� However
 the corresponding method
did not incorporate Chebyshev acceleration
 which turned out to be so useful
in the Hermitian case� Chebyshev acceleration was later incorporated in the
paper by Saad in ����� and some theory was proposed in ������ G�W� Stewart
����
 ���� initiated the idea of using Schur vectors as opposed to eigenvec

tors in subspace iteration� The motivation is that Schur vectors are easier to
handle numerically but there has not been any comparisons in the literature
between the two variants� A convergence theory of Subspace Iteration was
proposed in ������ The convergence results of Section 	 follow the paper �����
and a modi�cation due to Chatelin �private communication�� There are no
public domain codes available as yet implementing the accelerated subspace
iteration� Jenning and Stewart�s LOPSI code is available in the Transactions
for Mathematical Software and can be obtained from Netlib� Quite recently
 a
Chebyshev accelerated version of subspace iteration has been made available
by Rutherford Appleton laboratories ����� �
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Krylov Subspace Methods

In this chapter we will examine one of the most important classes
of methods available for computing eigenvalues and eigenvectors
of large matrices
 These techniques are based on projections
methods� both orthogonal and oblique� onto Krylov subpaces� i
e
�
subspaces spanned by the iterates of the simple power method

What may appear to be a trivial extension of a very slow algo�
rithm turns out to be one of the most successful methods for ex�
tracting eigenvalues of large matrices� especially in the Hermitian
case
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�� Krylov Subspaces

An important class of techniques known as Krylov subspace meth�
ods extracts approximations from a subspace of the form

Km � span fv� Av� A�v� ���Am��vg ��
��

referred to as a Krylov subspace
 If there is a possibility of ambi�
guity� Km is denoted by Km�A� v�
 In contrast with subspace iter�
ation� the dimension of the subspace of approximants increases by
one at each step of the approximation process
 A few well�known
of these Krylov subspace methods are�

��� The Hermitian Lanczos algorithm�

��� Arnoldi
s method and its variations�

��� The nonhermitian Lanczos algorithm


There are also block extensions of each of these methods termed
Block Krylov Subspace methods� which we will discuss only brie�y

Arnoldi
s method and Lanczos
 method are orthogonal projec�
tion methods while the nonsymmetric Lanczos algorithm is an
oblique projection method
 Before we pursue with the analysis of
these methods� we would like to emphasize an important distinc�
tion between implementation of a method and the method itself 

There are several distinct implementations of Arnoldi
s method�
which are all mathematically equivalent
 For example the arti�
cles ���� ���� ���	 all propose some di�erent versions of the same
mathematical process


In this section we start by establishing a few elementary prop�
erties of Krylov subspaces� many of which need no proof
 Recall
that the minimal polynomial of a vector v is the nonzero monic
polynomial p of lowest degree such that p�A�v � �


Proposition ��� The Krylov subspace Km is the subspace of all
vectors in Cn which can be written as x � p�A�v� where p is a
polynomial of degree not exceeding m� ��
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Proposition ��
 Let 
 be the degree of the minimal polynomial
of v� Then K� is invariant under A and Km � K� for all m � 
�

The degree of the minimal polynomial of v is often referred to as
the grade of v with respect to A
 Clearly� the grade of v does not
exceed n


Proposition ��� The Krylov subspace Km is of dimension m if
and only if the degree of the minimal polynomial of v with respect
to A is larger than m� ��

Proof� The vectors v� Av� � � �Am��v form a basis of Km if and
only if for any complex m�tuple �i� i � �� � � � � m � �� where at
least one �i is nonzero� the linear combination

Pm��
i�� �iA

iv is
nonzero
 This condition is equivalent to the condition that there
be no polynomial of degree � m � � for which p�A�v � �
 This
proves the result


Proposition ��� Let Qm be any projector onto Km and let Am be
the section of A to Km� that is� Am � QmAjKm� Then for any poly�
nomial q of degree not exceeding m��� we have q�A�v � q�Am�v�
and for any polynomial of degree � m� we have Qmq�A�v �
q�Am�v�

Proof� We will �rst prove that q�A�v � q�Am�v for any poly�
nomial q of degree � m� �
 It su�ces to prove the property for
the monic polynomials qi�t� � ti� i � �� � � �m � �
 The proof
is by induction
 The property is clearly true for the polynomial
q��t� � �
 Assume that it is true for qi�t� � ti�

qi�A�v � qi�Am�v�

Multiplying the above equation by A on both sides we get

qi���A�v � Aqi�Am�v�
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If i � � � m � � the vector on the left hand�side belongs to Km

and therefore if we multiply the above equation on both sides by
Qm we get

qi���A�v � QmAqi�Am�v�

Looking at the right hand side we observe that qi�Am�v belongs
to Km
 Hence

qi���A�v � QmAjKmqi�Am�v � qi���Am�v�

which proves that the property is true for i � � provided i �
� � m � �
 For the case i � � � m it remains only to show
that Qmqm�A�v � qm�Am�v� which follows from qm���A�v �
qm���Am�v by simply multiplying both sides by QmA


An interesting characterization of orthogonal Krylov projec�
tion methods can be formulated in terms of the characteristic
polynomial of the approximate problem
 In the orthogonal pro�
jection case� we de�ne the characteristic polynomial of the ap�
proximate problem as that of the matrix V H

m AVm where Vm is a
matrix whose column vectors form an orthonormal basis of Km

It is a simple exercise to show that this de�nition is independent
of the choice of Vm� the basis of the Krylov subspace


Theorem ��� Let �pm be the characteristic polynomial of the ap�
proximate problem resulting from an orthogonal projection method
onto the Krylov subspace Km� Then �pm minimizes the norm
kp�A�vk� over all monic polynomials p of degree m�

Proof� We denote by Pm the orthogonal projector onto Km

and Am the corresponding section of A
 By Cayley Hamilton
s
theorem we have �pm�Am� � � and therefore

��pm�Am�v� w� � �� � w � Km � ��
��

By the previous proposition �pm�Am�v � Pm�pm�A�v
 Hence ��
��
becomes

�Pm�pm�A�v� w� � �� � w � Km�
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or� since orthogonal projectors are self adjoint�

��pm�A�v�Pmw� � � � ��pm�A�v� w� � w � Km�

which is equivalent to

��pm�A�v� A
jv� � � � j � �� � � �m� ��

Writing �pm�t� � tm�q�t�� where q is of degree � m��� we obtain

�Amv � q�A�v� Ajv� � � � j � �� � � �m� ��

In the above system of equations we recognize the normal equa�
tions for minimizing the Euclidean norm of Amv� s�A�v over all
polynomials s of degree � m� �
 The proof is complete


The above characteristic property is not intended to be used
for computational purposes
 It is useful for establishing mathe�
matical equivalences between seemingly di�erent methods
 Thus�
a method developed by Erdelyi in ���� ���	 is based on precisely
minimizing kp�A�vk� over monic polynomials of some degree and
is therefore mathematically equivalent to any orthogonal projec�
tion method on a Krylov subspace
 Another such method was
proposed by Manteu�el ���� ���	 for the purpose of estimating
acceleration parameters when solving linear systems by Cheby�
shev method
 His method named the Generalized Power Method�
was essentially Erdelyi
s method with a special initial vector


An important point is that this characteristic property seems
to be the only known optimality property that is satis�ed by the
approximation process in the nonsymmetric case
 Other optimal�
ity properties� such as the mini�max theorem which are funda�
mental both in theory and in practice for symmetric problems
are no longer valid
 This results in some signi�cant di�culties
in understanding and analyzing these methods for nonsymmetric
eigenvalue problems
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�� Arnoldi�s Method

Arnoldi
s method is an orthogonal projection method onto Km for
general non�Hermitian matrices
 The procedure was introduced in
���� as a means of reducing a dense matrix into Hessenberg form

Arnoldi introduced this method precisely in this manner and he
hinted that the process could give good approximations to some
eigenvalues if stopped before completion
 It was later discovered
that this strategy lead to a good technique for approximating
eigenvalues of large sparse matrices
 We �rst describe the method
without much regard to rounding errors� and then give a few
implementation details


���� The Basic Algorithm

The procedure introduced by Arnoldi in ���� starts by building an
orthogonal basis of the Krylov subspace Km
 In exact arithmetic�
one variant of the algorithm is as follows


Algorithm ��� Arnoldi

�� Start
 Choose a vector v� of norm ��


� Iterate
 for j � �� �� � � � � m compute�

hij � �Avj� vi�� i � �� �� � � � � j� ��
��

wj � Avj �
jX

i��

hijvi� ��
��

hj���j � kwjk� � if hj���j � � stop ��
��

vj�� � wj�hj���j� ��
��

The algorithm will stop if the vector wj computed in ��
��
vanishes
 We will come back to this case shortly
 We now prove
a few simple but important properties of the algorithm


Proposition ��� The vectors v�� v�� � � � � vm form an orthonormal
basis of the subspace Km � spanfv�� Av�� � � � � Am��v�g�
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Proof� The vectors vj� i � �� �� � � �m are orthonormal by con�
struction
 That they span Km follows from the fact that each
vector vj is of the form qj���A�v� where qj�� is a polynomial of
degree j � �
 This can be shown by induction on j as follows

Clearly the result is true when j � �� since v� � q��A�v� with
q��t� � �
 Assume that the result is true for all integers � j and
consider vj��
 We have

hj��vj�� � Avj �
jX

i��

hijvi � Aqj���A�v� �
jX

i��

hijqi���A�v� ��
��

which shows that vj�� can be expressed as qj�A�v� where qj is of
degree j and completes the proof


Proposition ��� Denote by Vm the n � m matrix with column
vectors v�� � � � � vm and by Hm the m�m Hessenberg matrix whose
nonzero entries are de�ned by the algorithm� Then the following
relations hold	

AVm � VmHm � hm���mvm��e
H
m� ��
��

V H
m AVm � Hm � ��
��

Proof� The relation ��
�� follows from the following equality
which is readily derived from ��
�� and ��
���

Avj �
j��X
i��

hijvi� j � �� �� � � � � m � ��
���

Relation ��
�� follows by multiplying both sides of ��
�� by V H
m

and making use of the orthonormality of fv�� � � � � vmg


The situation is illustrated in Figure �
�
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Vm � wme
H
m�A

Hm

Vm

Figure ��� The action of A on Vm gives VmHm plus
a rank one matrix


As was noted earlier the algorithm may break down in case
the norm of wj vanishes at a certain step j
 In this situation the
vector vj�� cannot be computed and the algorithm stops
 There
remains to determine the conditions under which this situation
occurs


Proposition ��� Arnoldi�s algorithm breaks down at step j �i�e��
wj � � in ���
�� if and only if the minimal polynomial of v� is of
degree j� Moreover� in this case the subspace Kj is invariant and
the approximate eigenvalues and eigenvectors are exact�

Proof� If the degree of the minimal polynomial is j� then wj

must be equal to zero
 Indeed� otherwise vj�� can be de�ned and
as a result Kj�� would be of dimension j��� and from Proposition
�
�� this would mean that 
 � j � �� which is not true
 To prove
the converse� assume that wj � �
 Then the degree 
 of the
minimal polynomial of v� is such that 
 � j
 Moreover� we cannot
have 
 	 j otherwise by the previous proof the vector w� would
be zero and the algorithm would have stopped at the earlier step
number 

 The rest of the result follows from Proposition �
� seen
in Chapter IV
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The approximate eigenvalues �
�m	
i provided by the projection

process onto Km are the eigenvalues of the Hessenberg matrixHm

The Ritz approximate eigenvector associated with �

�m	
i is de�ned

by u
�m	
i � Vmy

�m	
i where y

�m	
i is an eigenvector associated with

the eigenvalue �
�m	
i 
 A number of the Ritz eigenvalues� typically

a small fraction of m� will usually constitute good approximations
of corresponding eigenvalues �i of A and the quality of the ap�
proximation will usually improve as m increases
 We will examine
these #convergence
 properties in detail in later sections
 The orig�
inal algorithm consists of increasingm until all desired eigenvalues
of A are found
 This is costly both in terms of computation and
storage
 For storage� we need to keep m vectors of length n plus
anm�m Hessenberg matrix� a total of approximately nm�m���

Considering the computational cost of the j�th step� we need to
multiply vj by A� at the cost of �� Nz� where Nz is number of
nonzero elements in A� and then orthogonalize the result against
j vectors at the cost of ��j � ��n� which increases with the step
number j


On the practical side it is crucial to be able to estimate the
residual norm inexpensively as the algorithm progresses
 This
turns out to be quite easy to do for Arnoldi
s method and� in fact�
for all the Krylov subspace methods described in this chapter

The result is given in the next proposition


Proposition ��� Let y
�m	
i be an eigenvector of Hm associated

with the eigenvalue �
�m	
i and u

�m	
i the Ritz approximate eigenvec�

tor u
�m	
i � Vmy

�m	
i � Then�

�A� �
�m	
i I�u

�m	
i � hm���m eHmy

�m	
i vm��

and� therefore�

k�A� �
�m	
i I�u

�m	
i k� � hm���mjeHmy�m	

i j �
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Proof� This follows from multiplying both sides of ��
�� by y
�m	
i �

AVmy
�m	
i � VmHmy

�m	
i � hm���m eHmy

�m	
i vm��

� �
�m	
i Vmy

�m	
i � hm���me

H
my

�m	
i vm�� �

Hence�

AVmy
�m	
i � �

�m	
i Vmy

�m	
i � hm���m eHmy

�m	
i vm�� �

In simpler terms� the proposition states that the residual norm
is equal to the last component of the eigenvector y

�m	
i multiplied

by hm���m
 In practice� the residual norms� although not always
indicative of actual errors� are quite helpful in deriving stopping
procedures


���� Practical Implementations

The description of the Arnoldi process given earlier assumed exact
arithmetic
 In reality� much is to be gained by using the Modi�ed
Gram�Schmidt or the Householder algorithm in place of the stan�
dard Gram�Schmidt algorithm
 With the modi�ed Gram�Schmidt
alternative the algorithm takes the following form


Algorithm ��
 Arnoldi � Modi�ed Gram�Schmidt

�� Start� Choose a vector v� of norm ��

�� Iterate� For j � �� �� � � � � m do�

�a	 w �� Avj


�b	 For i � �� �� � � � � j do�

hij � �w� vi��

w �� w � hijvi�
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�c	 hj���j � kwk� 

�d	 vj�� � w�hj���j �

There is no di�erence in exact arithmetic between this algo�
rithm and Algorithm �
�
 Although this formulation is numer�
ically superior to the standard Gram Schmidt formulation� we
do not mean to imply that the above Modi�ed Gram�Schmidt
is su�cient for all cases
 In fact there are two alternatives that
are implemented to guard against large cancellations during the
orthogonalization process


The �rst alternative is to resort to double orthogonalization

Whenever the �nal vector obtained at the end of the second loop
in the above algorithm has been computed� a test is performed to
compare its norm with the norm of the initialw �which is kAvjk��

If the reduction falls below a certain threshold� an indication that
sever cancellation might have occurred� a second orthogonaliza�
tion is made
 It is known from a result by Kahan that additional
orthogonalizations are super�uous �see for example Parlett ����	�


The second alternative is to resort to a di�erent technique
altogether
 In fact one of the most reliable orthogonalization
techniques� from the numerical point of view� is the Householder
algorithm
 This has been implemented for the Arnoldi process
by Walker ����	
 We do not describe the Householder algorithm
here but we would like to compare the cost of each of the three
versions


In the table shown below� GS stands for Gram�Schmidt� MGS
for Modi�ed Gram�Schmidt� MGSR for Modi�ed Gram�Schmidt
with Reorthogonalization� and HO for Householder


GS MGS MGSR HO
Flops m�n m�n �m�n �m�n� �

�
m�

Storage �m� ��n �m� ��n �m� ��n �m� ��n� �
�
m�

A few comments are in order
 First� the number of operations
shown for MGSR are for the worst case situation when a second
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orthogonalization is needed every time
 This is unlikely to take
place and in practice the actual number of operations is much
more likely to be close to that of the simple MGS
 Concerning
storage� the little gain in storage requirement in the Householder
version comes from the fact that the Householder transformation
requires vectors whose length diminishes by � at every step of
the process
 However� this di�erence is negligible relative to the
whole storage requirement given that usually m � n
 More�
over� the implementation to take advantage of this little gain may
become rather complicated
 In spite of this we do recommend
implementing Householder orthogonalization for developing gen�
eral purpose reliable software packages
 A little additional cost in
arithmetic may be more than o�set by the gains in robustness in
these conditions


Example ��� Consider the matrix Mark
��� used in the examples
in the previous two Chapters� Table 
�� shows the convergence of the
rightmost eigenvalue obtained by Arnoldi�s method�

m 
e
	� �m
	� Res� Norm

� ������������ ��� ����
D���
�� ������������ ��� ����
D	��
�� ������������ ��� ��
��D	��
�� �������
���� ��� ���
�D	��
�� ����������� ��� �����D	��
�� ������������ ��� �����D	��

Table ��� Convergence of rightmost eigenvalue computed
from a simple Arnoldi algorithm for A � Mark
����

Comparing the results shown in Table 
�� with those of the examples
seen in Chapter IV� it is clear that the convergence is much faster than
the power method or the shifted power method�

As was mentioned earlier the standard implementations of
Arnoldi
s method are limited by their high storage and compu�
tational requirements as m increases
 Suppose that we are inter�
ested in only one eigenvalue eigenvector of A� namely the eigen�
value of largest real part of A
 Then one way to circumvent the
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di�culty is to restart the algorithm
 After a run with m Arnoldi
vectors� we compute the approximate eigenvector and use it as an
initial vector for the next run with Arnoldi
s method
 This pro�
cess� which is the simplest of this kind� is iterated to convergence


Algorithm ��� Iterative Arnoldi

�� Start
 Choose an initial vector v� and a dimension m�

�� Iterate
 Perform m steps of Arnoldi
s algorithm�

�� Restart
 Compute the approximate eigenvector u�m	
� asso�

ciated with the rightmost eigenvalue �
�m	
� � If satis�ed stop�

else set v� � u
�m	
� and goto ��

Example ��
 Consider the same matrix Mark
��� as above� We
now use a restarted Arnoldi procedure for computing the eigenvector
associated with the eigenvalue with algebraically largest real part� We
use m � ���

m 
e
	� �m
	� Res� Norm

�� ������������D��� ��� ����
D	��
�� ������������D��� ��� �����D	��
�� ����������
�D��� ��� �����D	��
�� ������������D��� ��� �����D	�

�� �����������
D��� ��� �����D	��

Table ��� Convergence of rightmost eigenvalue computed
from a restarted Arnoldi procedure for A � Mark
����

Comparing the results of Table 
�� with those of the previous example
indicates a loss in performance� in terms of total number of matrix	
vector products� However� the number of vectors used here is �� as
opposed to ��� so the memory requirement is much more modest�
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���� Incorporation of Implicit De�ation

We now consider the following implementation which incorpo�
rates a de�ation process
 The previous algorithm is valid only
for the case where only one eigenvalue eigenvector pair must be
computed
 In case several such pairs must be computed� then
there are two possible options
 The �rst� is to take v� to be a lin�
ear combination of the approximate eigenvectors when we restart

For example� if we need to compute the p rightmost eigenvectors�
we may take

�v� �
pX
i��

�i�ui�

where the eigenvalues are numbered in decreasing order of their
real parts
 The vector v� is then obtained from normalizing �v�

The simplest choice for the coe�cients �i is to take �i � �� i �
�� � � � � p
 There are several drawbacks to this approach� the most
important of which being that there is no easy way of choosing
the coe�cients �i in a systematic manner
 The result is that for
hard problems� convergence is di�cult to achieve


An alternative is to compute one eigenpair at a time and use
de�ation
 We can use de�ation on the matrix A explicitly as
was described in Chapter IV
 This entails constructing progres�
sively the �rst k Schur vectors
 If a previous orthogonal basis
�u�� � � � � uk��	 of the invariant subspace has already been com�
puted� then� to compute the eigenvalue �k� we work with the
matrix A� U�UH � in which � is a diagonal matrix


Another implementation� which we now describe� is to work
with a single basis v�� v�� ���� vm whose �rst vectors are the Schur
vectors that have already converged
 Suppose that k � � such
vectors have converged and call them v�� v�� ���� vk��
 Then we
start by choosing a vector vk which is orthogonal to v�� ����� vk��
and of norm �
 Next we performm�k steps of an Arnoldi process
in which orthogonality of the vector vj against all previous v�is�
including v�� ���� vk�� is enforced
 This generates an orthogonal
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basis of the subspace

spanfv�� � � � � vk��� vk� Avk� � � � � Am�kvkg � ��
���

Thus� the dimension of this modi�ed Krylov subspace is constant
and equal to m in general
 A sketch of this implicit de�ation
procedure combined with Arnoldi
s method is the following


Algorithm ��� De�ated Iterative Arnoldi

A� Start
 Choose an initial vector v� of norm unity� Set k �� ��

B� Eigenvalue loop


�� Arnoldi Iteration� For j � k� k � �� ���� m do�


 Compute w �� Avj�


 Compute a set of j coe�cients hij so that w ��
w � Pj

i�� hijvi is orthogonal to all previous vi
s�
i � �� �� ���� j�


 Compute hj���j � kwk� and vj�� � w�hj���j�

�� Compute approximate eigenvector of A associated with
the eigenvalue ��k and its associated residual norm es�
timate �k�

�� Orthonormalize this eigenvector against all previous
vj
s to get the approximate Schur vector �uk and de�
�ne vk �� �uk�

�� If �k is small enough then �accept eigenvalue	�


 Compute hi�k � �Avk� vi� � i � �� ��� k�


 Set k �� k � ��


 If k � nev then stop else goto B�

�� Else go to B���

Note that in the B�loop� the Schur vectors associated with
the eigenvalues ��� ���� �k�� are frozen and so is the corresponding
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upper triangular matrix corresponding to these vectors
 As a new
Schur vector has converged� step B
� computes the k�th column of
R associated with this new basis vector
 In the subsequent steps�
the approximate eigenvalues are the eigenvalues of the m � m
Hessenberg matrix Hm de�ned in the algorithm and whose k � k
principal submatrix is upper triangular For example when m � �
and after the second Schur vector� k � �� has converged� the
matrix Hm will have the form

Hm �

�
BBBBBBBB�

� � � � � �
� � � � �

� � � �
� � � �

� � �
� �

�
CCCCCCCCA

� ��
���

Therefore in the subsequent steps� we will consider only the eigen�
values that are not associated with the � � � upper triangular
matrix


It can be shown that� in exact arithmetic� the �n�k���n�k�
Hessenberg matrix in the lower ��� �� block is the same matrix
that would be obtained from an Arnoldi run applied to the matrix
�I � Pk�A in which Pk is the orthogonal projector onto the �ap�
proximate� invariant subspace that has already been computed�
see Exercise P��
�
 The above algorithm although not competitive
with the more elaborate versions that use some form of precondi�
tioning� will serve as a good model of a de�ation process combined
with Arnoldi
s projection


Example ��� We will use once more the test matrix Mark
��� for
illustration� Here we test our restarted and de�ated Arnoldi procedure
for computing the three eigenvalues with algebraically largest real part�
We use m � �� as in the previous example� We do not show the run
corresponding to the �rst eigenvalue since the data is already listed
in Table 
��� The �rst column shows the eigenvalue being computed�
Thus� it takes �ve outer iterations to compute the �rst eigenvalue 
see
example 
���� � outer iterations to compute the second one� and �nally



Krylov Subspace Methods ���

� outer iterations to get the third one� The convergence towards the
last eigenvalue is slower than for the �rst two� This could be attributed
to poorer separation of 	� from the other eigenvalues but also to the
fact that m has implicitly decreased from m � �� when computing the
�rst eigenvalue to m � � when computing the third one�

Eig� Mat	Vec�s 
e
	� �m
	� Res� Norm

� 
� ������������ ��� �����D	��

� ���������
�� ��� �����D	��
�� ������������ ��� �����D	�

�� ����������
� ��� �����D	��

� �
 ������������ ��� �����D	��
��� ������������ ��� �����D	��
��� �����
������ ��� �����D	��
��� ������������ ��� �����D	��
��� ��������
��� ��� �����D	��
��
 ����������
� ��� �����D	�

��� ������������ ��� �����D	�

��� ����������
� ��� �����D	��

Table ��� Convergence of three rightmost eigenvalues com	
puted from a de�ated Arnoldi procedure forA � Mark
����

�� The Hermitian Lanczos Algorithm

The Hermitian Lanczos algorithm can be viewed as a simpli�ca�
tion of Arnoldi
s method for the particular case when the matrix
is Hermitian
 The principle of the method is therefore the same in
that it is a projection technique on a Krylov subspace
 However�
there are a number of interesting properties that will cause the
algorithm to simplify
 On the theoretical side there is also much
more that can be said on the Lanczos algorithm than there is on
Arnoldi
s method




��� Chapter VI

���� The Algorithm

To introduce the algorithm we start by making the observation
stated in the following theorem


Theorem ��
 Assume that Arnoldi�s method is applied to a Her�
mitian matrix A� Then the coe�cients hij generated by the algo�
rithm are real and such that

hij � �� for � � i 	 j � � � ��
���

hj�j�� � hj���j � j � �� �� � � � � m� ��
���

In other words the matrix Hm obtained from the Arnoldi process
is real� tridiagonal� and symmetric�

Proof� The proof is an immediate consequence of the fact that
Hm � V H

m AVm is a Hermitian matrix which is also a Hessen�
berg matrix by construction
 Therefore� Hm must be a Hermitian
tridiagonal matrix
 In addition� observe that by its de�nition the
scalar hj���j is real and that hjj � �Avj� vj� is also real if A is Her�
mitian
 Therefore� the Hessenberg matrix Hm is a real tridiagonal
and symmetric matrix


The standard notation used to describe the Lanczos algorithm�
is obtained by setting

�j � hjj �

�j � hj���j �

which leads to the following form of the Modi�ed Gram Schmidt
variant of Arnoldi
s method� namely Algorithm �
�


Algorithm ��� The Lanczos Algorithm

�� Start
 Choose an initial vector v� of norm unity� Set �� �
�� v� � ��
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�� Iterate
 for j � �� �� � � � � m do

wj �� Avj � �jvj�� ��
���

�j �� �wj� vj� ��
���

wj �� wj � �jvj ��
���

�j�� �� kwjk� ��
���

vj�� �� wj��j�� ��
���

An important and rather surprising property is that the above
simple algorithm guarantees� at least in exact arithmetic� that the
vectors vi� i � �� �� � � � � are orthogonal
 In reality� exact orthog�
onality of these vectors is only observed at the beginning of the
process
 Ultimately� the vi
s start losing their global orthogonal�
ity very rapidly
 There has been much research devoted to �nding
ways to either recover the orthogonality� or to at least diminish its
e�ects by partial or selective orthogonalization� see Parlett ����	


The major practical di�erences with Arnoldi
s method are that
the matrix Hm is tridiagonal and� more importantly� that we only
need to save three vectors� at least if we do not resort to any form
of reorthogonalization


���� Relation with Orthogonal Polynomials

In exact arithmetic the equation ��
��� in the algorithm takes the
form

�j��vj�� � Avj � �jvj � �jvj���

This three term recurrence relation is reminiscent of the standard
three term recurrence relation of orthogonal polynomials
 In fact
as we will show in this section� there is indeed a strong relationship
between the Lanczos algorithm and orthogonal polynomials
 We
start by recalling that if the grade of v� is � m then the subspace
Km is of dimensionm and consists of all vectors of the form q�A�v�
with degree�q� � m��
 In this case there is even an isomorphism
between Km and Pm��� the space of polynomials of degree �
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m� �� which is de�ned by

q � Pm�� � x � q�A�v� � Km

Moreover� we can consider that the subspace Pm�� is provided
with the inner product

	 p� q �v�� �p�A�v�� q�A�v�� ��
���

which is indeed a nondegenerate bilinear form under the assump�
tion that m does not exceed 
� the grade of v�
 Now observe that
the vectors vi are of the form

vi � qi���A�v�

and the orthogonality of the vi
s translates into the orthogonality
of the polynomials with respect to the inner product ��
���
 More�
over� the Lanczos procedure is nothing but the Stieltjes algorithm
�see� for example� Gautschi ���	� for computing a sequence of or�
thogonal polynomials with respect to the inner product ��
���

From Theorem �
� the characteristic polynomial of the tridiagonal
matrix produced by the Lanczos algorithm minimizes the norm
k�kv� over the monic polynomials
 It is easy to prove by using
a well�known recurrence for determinants of tridiagonal matrix�
that the Lanczos recurrence computes the characteristic polyno�
mial of Hm times the initial vector v�
 This is another way of
relating the vi
s to the orthogonal polynomials


�� Non�Hermitian Lanczos algorithm

This is an extension of the algorithm seen in the previous section
to the non�Hermitian case
 We already know of one such exten�
sion namely Arnoldi
s procedure which is an orthogonal projec�
tion method
 However� the non�Hermitian Lanczos algorithm is
an oblique projection technique and is quite di�erent in concept
from Arnoldi
s method
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���� The Algorithm

The algorithm proposed by Lanczos for non�Hermitian matrices
di�ers from Arnoldi
s method in one essential way� instead of
building an orthogonal basis ofKm� it builds a pair of biorthogonal
bases for the two subspaces

Km�A� v�� � spanfv�� Av�� � � � � Am��v�g
and

Km�A
H � w�� � spanfw�� A

Hw�� � � � � �A
H�m��w�g�

The algorithm to achieve this is as follows


Algorithm ��� The non�Hermitian Lanczos Algorithm

�� Start
 Choose two vectors v�� w� such that �v�� w�� � �� Set
�� � �� w� � v� � ��


� Iterate
 for j � �� �� � � � � m do

�j � �Avj� wj� ��
���

�vj�� � Avj � �jvj � �jvj�� ��
���

�wj�� � AHwj � ��jwj � �jwj�� ��
���

�j�� � j��vj��� �wj���j��� ��
���

�j�� � ��vj��� �wj�����j�� ��
���

wj�� � �wj����j�� ��
���

vj�� � �vj����j�� ��
���

We should point out that there is an in�nity of ways of choos�
ing the scalars �j��� �j�� in ��
���$��
���
 These two parameters
are scaling factors for the two vectors vj�� and wj�� and can be
selected in any manner to ensure that �vj��� wj��� � �
 As a
result of ��
���� ��
��� all that is needed is to choose two scalars
�j��� �j�� that satisfy the equality

�j���j�� � ��vj��� �wj��� ��
���
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The choice made in the above algorithm attempts to scale the two
vectors so that they are divided by two scalars having the same
modulus
 Thus� if initially v� and w� have the same norm� all of
the subsequent vi
s will have the same norms as the wi
s
 One can
scale both vectors by their ��norms� so that the inner product of
vi and wi is no longer equal to one
 A modi�ed algorithm can
be written with these constraint
 In this situation a generalized
eigenvalue problem Tmz � �Dmz must be solved to compute the
Ritz values where Dm is a diagonal matrix� whose entries are the
inner products �vi� wi�
 The modi�ed algorithm is the subject of
Exercise P��
�


In what follows we will place ourselves in the situation where
the pair of scalars �j��� �j�� is any pair that satis�es the relation
��
���� instead of restricting ourselves to the particular case de�
�ned by ��
��� $ ��
���
 A consequence is that �j can be complex
and in fact the formula de�ning �wj�� in ��
��� should then be
modi�ed to

�wj�� � AHwj � ��jwj � ��jwj�� �

We will denote by Tm the tridiagonal matrix

Tm �

�
BBBBBBBBB�

�� ��

�� �� ��

� � �

�m�� �m�� �m

�m �m

�
CCCCCCCCCA

�

Note that in the particular case where A is real as well as the
initial vectors v�� w�� and if ��
��� $ ��
��� are used then the �j
s
are real positive and �j � ��j


Our �rst observation from the algorithm is that the vectors vi
belong to Km�A� v�� while the wj 
s are in Km�A

H � w��
 In fact
we can show the following proposition


Proposition ��� If the algorithm does not break down before step
m then the vectors vi� i � �� � � � � m� and wj� j � �� � � � � m� form a
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biorthogonal system� i�e��

�vj� wi� � �ij � � i� j � m �

Moreover� fvigi���������m is a basis of Km�A� v�� and fwigi���������m

is a basis of Km�A
H � w�� and we have the relations�

AVm � VmTm � �m��vm��e
H
m� ��
���

AHWm � WmT
H
m � ��m��wm��e

H
m� ��
���

WH
mAVm � Tm � ��
���

Proof� The biorthogonality of the vectors vi� wi will be shown
by induction
 By assumption �v�� w�� � �
 Assume now that the
vectors v�� � � � vj and w�� � � � wj are biorthogonal� and let us estab�
lish that the vectors v�� � � � vj�� and w�� � � � wj�� are biorthogonal


We show �rst that �vj��� wi� � � for i � j
 When i � j we
have

�vj��� wj� � ���j����Avj� wj�� �j�vj� wj�� �j�vj��� wj�	 �

The last inner product in the above expression vanishes by the
induction hypothesis
 The two other terms cancel each other by
the de�nition of �j and the fact that �vj� wj� � �
 Consider now

�vj��� wj��� � ���j����Avj� wj���� �j�vj� wj���� �j�vj��� wj���	 �

Again from the induction hypothesis the middle term in the right
hand side vanishes
 The �rst term can be rewritten as

�Avj� wj��� � �vj� A
Hwj���

� �vj� ��jwj � ��j��wj�� � ��j��wj���

� �j�vj� wj� � �j���vj� wj��� � �j���vj� wj���

� �j

and as a result�

�vj��� wj��� � ���j����Avj� wj���� �j�vj��� wj���	 � � �



��� Chapter VI

More generally� consider an inner product �vj��� wi� with i 	 j���

�vj��� wi� � ���j����Avj� wi�� �j�vj� wi�� �j�vj��� wi�	

� ���j����vj� A
Hwi�� �j�vj� wi�� �j�vj��� wi�	

� ���j����vj�
��i��wi�� � ��iwi � ��iwi���� �j�vj� wi�

��j�vj��� wi�	 �

By the induction hypothesis� all of the inner products in the above
expression vanish
 We can show in the same way that �vi� wj��� �
� for i � j
 Finally� we have by construction �vj��� wj��� � �

This completes the induction proof


The proof of the other matrix relations is identical with the
proof of the similar relations in Arnoldi
s method


The relation ��
��� is key to understanding the nature of the
method
 From what we have seen in Chapter IV on general
projection methods� the matrix Tm is exactly the projection of
A obtained from an oblique projection process onto Km�A� v��
and orthogonally to Km�A

H � w��
 The approximate eigenvalues

�
�m	
i provided by this projection process are the eigenvalues of

the tridiagonal matrix Tm
 A Ritz approximate eigenvector of A
associated with �

�m	
i is de�ned by u

�m	
i � Vmy

�m	
i where y

�m	
i is an

eigenvector associated with the eigenvalue �
�m	
i of Tm
 Similarly

to Arnoldi
s method� a number of the Ritz eigenvalues� typically a
small fraction of m� will constitute good approximations of corre�
sponding eigenvalues �i of A and the quality of the approximation
will improve as m increases


We should mention that the result of Proposition �
�� which
gives a simple and inexpensive way to compute residual norms
can readily be extended as follows�

�A� �
�m	
i I�u

�m	
i � �m��e

H
my

�m	
i vm�� ��
���

and� as a result k�A� �
�m	
i I�u

�m	
i k� � j�m��e

H
my

�m	
i j 


An interesting new feature here is that the operators A and
AH play a dual role in that we perform similar operations with
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them
 We can therefore expect that if we get good approximate
eigenvectors for A we should in general get as good approxima�
tions for the eigenvectors of AH 
 In fact we might also view the
non�Hermitian Lanczos procedure as a method for approximating
eigenvalues and eigenvectors of the matrix AH by a projection
method onto Lm � spanfw�� A

Hw�� � � � � �A
H�m��w�g and orthog�

onally to Km�A� v��
 As a consequence� both the left and right
eigenvectors of A will be well approximated by the process
 In
contrast Arnoldi
s method only computes approximations to the
right eigenvectors
 The approximations to the left eigenvectors
are of the form Wmz

�m	
i where z

�m	
i is a left eigenvector of Tm

associated with the eigenvalue �
�m	
i 
 This constitutes one of the

major di�erences between the two methods
 There are applica�
tions where both left and right eigenvectors may be needed
 In
addition� when estimating errors and condition numbers of the
computed eigenpair it might be crucial that both the left and the
right eigenvectors be available


From the practical point of view� another big di�erence be�
tween the non�Hermitian Lanczos procedure and the Arnoldi meth�
ods is that we now only need to save a few vectors in memory
to execute the algorithm if no reorthogonalization is performed

More precisely� we need � vectors of length n plus some storage for
the tridiagonal matrix� no matter how large m is
 This is clearly
a signi�cant advantage


On the other hand there are more risks of breakdown with the
non�Hermitian Lanczos method
 The algorithm will break down
whenever ��vj��� �wj��� � � which can be shown to be equivalent
to the existence of a vector in Km�A� v�� that is orthogonal to
the subspace Km�A

H � w��
 In fact this was seen to be a necessary
and su�cient condition for the oblique projector onto Km�A� v��
orthogonally to Km�A

H � w�� not to exist
 In the case of Arnoldi
s
method a breakdown is actually a favorable situation since we are
guaranteed to obtain exact eigenvalues in this case as was seen
before
 The same is true in the case of the Lanczos algorithm
when either �vj�� � � or �wj�� � �
 However� when �vj�� 	� �
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and �wj�� 	� � then this is non�longer true
 In fact the serious
problem is not as much caused by the exact occurrence of this
phenomenon which Wilkinson ����	 calls serious breakdown� as it
is its near occurrence
 A look at the algorithm indicates that we
may have to scale the Lanczos vectors by small quantities when
this happens and the consequence after a number of steps may be
serious
 This is further discussed in the next subsection


Since the subspace from which the approximations are taken is
identical with that of Arnoldi
s method� we have the same bounds
for the distance k�I � Pm�uik�
 However� this does not mean in
any way that the approximations obtained by the two methods are
likely to be of similar quality
 One of the weaknesses of the method
is that it relies on oblique projectors which may su�er from poor
numerical properties
 Moreover� the theoretical bounds shown
in Chapter IV do indicate that the norm of the projector may
play a signi�cant role
 The method has been used successfully by
Cullum and Willoughby ���� ��	 to compute eigenvalues of very
large matrices
 We will discuss these implementations in the next
section


���� Practical Implementations

There are various ways of improving the standard non�Hermitian
Lanczos algorithm which we now discuss brie�y
 A major focus
of researchers in this area is to �nd ways of circumventing the po�
tential breakdowns or #near breakdowns
 in the algorithm
 Other
approaches do not attempt to deal with the breakdown but rather
try to live with it
 We will weigh the pros and cons of both ap�
proaches after we describe the various existing scenarios


��
�� Look�Ahead Lanczos Algorithms

As was already mentioned� a problem with the Lanczos algorithm
is the potential of breakdown in the normalization steps ��
���
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and ��
���
 Such a break down will occur whenever

��vj��� �wj��� � �� ��
���

which can arise in two di�erent situations
 Either one of the two
vectors �vj�� or �wj�� vanishes or they are both nonzero but their
inner product is zero
 In the �rst case� we have again the #lucky
breakdown
 scenario which we have seen in the case of Hermitian
matrices
 Thus� if �vj�� � � then spanfVjg is invariant and all
approximate eigenvalues and associated right eigenvectors will be
exact� while if �wj�� � � then spanfWjg will be invariant and
the approximate eigenvalues and associated left eigenvectors will
be exact
 The second case� when neither of the two vectors is
zero but their inner product is zero is termed serious breakdown
by Wilkinson �see ����	� p
 ����
 Fortunately� there are some
cures� that will allow one to continue the algorithm in most cases

The corresponding modi�cations of the algorithm are often put
under the denomination Look�Ahead Lanczos algorithms 
 There
are also rare cases of #incurable
 breakdowns which will not be
discussed here �see ����	 and ����	�
 The main idea of Look�
Ahead variants of the Lanczos algorithm is that even though the
pair vj��� wj�� cannot be de�ned it is often the case that the pair
vj��� wj�� can be de�ned
 The algorithm can then be pursued
from that iterate as before until a new breakdown is encountered

If the pair vj��� wj�� cannot be de�ned then one can try the pair
vj��� wj�� and so on


To be more precise on why this is possible� we need to go back
to the connection with orthogonal polynomials mentioned earlier
for the Hermitian case
 We can extend the relationship to the
non�Hermitian case by de�ning the bilinear form on the subspace
Pm��

	 p� q �� �p�A�v�� q�A
H�w��� ��
���

Unfortunately� this can constitute an #inde�nite inner product

since 	 p� p � can now be zero or even negative
 We note that
there is a polynomial pj of degree j such that �vj�� � pj�A�v�
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and in fact the same polynomial intervenes in the equivalent ex�
pression of wj��
 More precisely� there is a scalar 
j such that
�wj�� � 
jpj�A

H�v�
 Similarly to the Hermitian case the non�
Hermitian Lanczos algorithm attempts to compute a sequence of
polynomials that are orthogonal with respect to the inde�nite in�
ner product de�ned above
 If we de�ne the moment matrix

Mk � f	 xi��� xj�� �gi�j�����k

then this process is mathematically equivalent to �nding a factor�
ization

Mk � LkUk

of the moment matrix Mk� in which Uk is upper triangular and
Lk is lower triangular
 Note that this matrix is a Hankel matrix�
i
e
� aij is constant for i � j � constant


Because

	 pj� pj �� �
j�pj�A�v�� pj�A
H�w��

we observe that there is a serious breakdown at step j if and only
if the inde�nite norm of the polynomial pj at step j vanishes

The main idea of the Look�Ahead Lanczos algorithms is that if
we skip this polynomial it may still be possible to compute pj��

and continue to generate the sequence
 To explain this simply� we
consider

qj�x� � xpj�� and qj���x� � x�pj���x� �

It is easy to verify that both qj and qj�� are orthogonal to the
polynomials p�� ���� pj��
 We can� for example� de�ne �somewhat
arbitrarily� pj � qj� and get pj�� by orthogonalizing qj�� against
pj�� and pj
 It is clear that the resulting polynomial will then
be orthogonal against all polynomials of degree � j� see Exercise
P��
��
 Therefore we can continue the algorithm from step j � �
in the same manner
 Exercise P��
�� generalizes this to the case
where we need to skip k polynomials rather than just one
 This
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simplistic description gives the main mechanism that lies behind
the di�erent versions of Look�Ahead Lanczos algorithms proposed
in the literature
 In the Parlett�Taylor�Liu implementation ����	�
it is observed that the reason for the break down of the algorithm
is that the pivots encountered during the LU factorization of the
moment matrix Mk vanish
 Divisions by zero are then avoided by
implicitly performing a pivot with a � � � matrix rather than a
using a �� � pivot


The drawback of Look�Ahead implementations is the nonneg�
ligible added complexity
 In addition to the di�culty of deciding
when to consider that one has a near break�down situation� one
must cope with the fact that the matrix Tm is no longer tridiago�
nal
 It is easy to see that whenever a step is skipped� we introduce
a #bump
� as it it termed in ����	� above the superdiagonal ele�
ment
 This further complicates the issue of the computation of
the eigenvalues of the Ritz values


��
�
 The Issue of Reorthogonalization

Just as in the Hermitian case� the vectors wj and vi will tend to
loose their bi�orthogonality
 Techniques that perform some form
of #partial
 or #selective
 reorthogonalization can be developed for
non�Hermitian Lanczos algorithm as well
 One di�culty here is
that selective orthogonalization� which typically requires eigenvec�
tors� will su�er from the fact that eigenvectors may be inaccurate

Another problem is that we now have to keep two sets of vectors�
typically in secondary storage� instead of only one


An alternative to reorthogonalization is to live with the loss of
orthogonality
 Although the theory is not as well understood in
the non�Hermitian case as it is in the Hermitian case� it has been
observed that despite the loss of orthogonality� convergence is still
observed in general� at the price of a few practical di�culties

More precisely� a converged eigenvalue may appear several times�
and monitoring extraneous eigenvalues becomes important
 Cul�
lum and Willoughby ���	 suggest precisely such a technique based
on a few heuristics
 The technique is based on a comparison of
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the eigenvalues of the successive tridiagonal matrices Tk


	� Block Krylov Methods

In many circumstances it is desirable to work with a block of
vectors instead of a single vectors
 For example� in out�of core
�nite�element codes it is a good strategy to exploit the presence
of a block of the matrix A in fast memory� as much as possible

This can easily done with a method such as the subspace iteration
for example� but not the usual Arnoldi Lanczos algorithms
 In
essence� the block Arnoldi method is to the Arnoldi method what
the subspace iteration is to the usual power method
 Thus� the
block Arnoldi can be viewed as an acceleration of the subspace
iteration method
 There are many possible implementations of
the algorithm three of which are described next


Algorithm ��� Block Arnoldi

�� Start
 Choose a unitary matrix V� of dimension n� r�


� Iterate
 for j � �� �� � � � � m compute�

Hij � V H
i AVj i � �� �� � � � � j� ��
���

Wj � AVj �
jX

i��

ViHij � ��
���

Wj � Vj��Hj���j Q�R decomposition of Wj� ��
���

The above algorithm is a straightforward block analogue of Algo�
rithm �
�
 By construction� the blocks constructed by the algo�
rithm will be orthogonal blocks that are orthogonal to each other

In what follows we denote by Ik the k�k identity matrix and use
the following notation

Um � �V�� V�� � � � � Vm	 �

Hm � �Hij���i�j�m� Hij � �� i�j � � �

Em � matrix of the last r columns of Inr�
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Then� the analogue of the relation ��
�� is

AUm � UmHm � Vm��Hm���mE
H
m �

Thus� we obtain a relation analogous to the one we had before
except that the matrix Hm is no longer Hessenberg but band�
Hessenberg� in that we have r� � additional diagonals below the
subdiagonal


A second version of the algorithm would consist of using a
modi�ed block Gram�Schmidt procedure instead of the simple
Gram�Schmidt procedure used above
 This leads to a block gen�
eralization of Algorithm �
�� the Modi�ed Gram�Schmidt version
of Arnoldi
s method


Algorithm ��� Block Arnoldi � MGS version

�� Start
 Choose a unitary matrix V� of size n� r�


� Iterate
 For j � �� �� � � � � m do�


 Compute Wj �� AVj


 For i � �� �� � � � � j do�

Hij �� V H
i Wj

Wj �� Wj � VjHij�


 Compute the Q�R decomposition Wj � Vj��Hj���j

Again� in practice the above algorithm is more viable than its
predecessor
 Finally� a third version� developed by A
 Ruhe� see
reference ����	� for the symmetric case �Block Lanczos algorithm��
yields an algorithm that is quite similar to the original Arnoldi
algorithm


Algorithm ��� Block Arnoldi � Ruhe�s variant

�� Start
 Choose r initial orthonormal vectors fvigi�������r�



��� Chapter VI

�� Iterate
 for j � r� r � �� � � � � � m� r do�

�a	 Set k �� j � r � �


�b	 Compute w �� Avk


�c	 For i � �� �� � � � � j do


 hi�k �� �w� vi�


 w �� w � hi�kvi

�d	 Compute hj���k �� kwk� and vj�� �� w�hj���k�

Observe that the particular case r � � coincides with the usual
Arnoldi process
 That the two algorithms �
� and �
� are mathe�
matically equivalent is straightforward to show
 The advantage of
the above algorithm� is its simplicity
 On the other hand a slight
disadvantage is that we give up some potential for parallelism
 In
the original version the columns of the matrix AVj can be com�
puted in parallel whereas in the new algorithm� we must compute
them in sequence


Generally speaking� the block methods are of great practical
value in some applications but they are not as well studied from
the theoretical point of view
 One of the reasons is possibly the
lack of any convincing analogue of the relationship with orthogo�
nal polynomials established in Subsection �
� for the single vector
Lanczos algorithm
 We have not covered the block versions of
the two Lanczos algorithms �Hermitian and non�Hermitian� but
these generalizations are straightforward



� Convergence of the Lanczos Process

In this section we examine the convergence properties of the Her�
mitian Lanczos algorithm� from a theoretical point of view
 Well�
known results from approximation theory will be used to derive
a convergence analysis of the method
 In particular Chebyshev
polynomials play an important role and we refer the readers to
the end of Chapter IV for some background on these polynomials




Krylov Subspace Methods ���

	��� Distance between Km and an Eigenvector

In the following we will assume that the eigenvalues of the Her�
mitian matrix A are labeled in decreasing order� i
e
�

�� � �� � � � � � �n �

and that the approximate eigenvalues are labeled similarly
 We
will now state the main result of this section� starting with the
following lemma


Lemma ��� Let Pi be the spectral projector associated with the
eigenvalue �i� Then� if Piv� 	� �� we have

tan ��ui�Km� � min
p� Pm��� p��i	��

kp�A�yik� tan ��ui� v�� ��
���

in which

yi �

�
�I�Pi	v�

k�I�Pi	v�k�
if �I � Pi�v� 	� � �

� otherwise�

Proof� The subspace Km consists of all vectors of the form
x � q�A�v� where q is any polynomial of degree � m � �
 We
have the orthogonal decomposition

x � q�A�v� � q�A�Piv� � q�A��I � Pi�v�

and the angle between x and ui is de�ned by

tan ��x� ui� �
kq�A��I � Pi�v�k�
kq�A�Piv�k�

�
kq�A�yik�
jq��i�j

k�I � Pi�v�k�
kPiv�k� �

If we let p��� � q����q��i� we get

tan ��x� ui� � kp�A�yik� tan ��v�� ui�

which shows the result by taking the minimum over all x
s in Km



