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���� From Quadratic to Generalized Problems

The most common way of dealing with the above problem is to
transform it into a �linear� generalized eigenvalue problem� For
example� de�ning

v �

�
�u

u

�

we can rewrite �	�
�� as

��C �K
I �

�
v � �

�
M �
� I

�
v � �	�
��

It is clear that there is a large number of di
erent ways of rewrit�
ing �	�
��� the one above being one of the simplest� One advantage
of �	�
�� is that when M is Hermitian positive de�nite� as is often
the case� then so also is the second matrix of the resulting gener�
alized problem �	�
��� If all matrices involved� namely K� C� and
M � are Hermitian it might be desirable to obtain a generalized
problem with Hermitian matrices� even though this does not in
any way guarantee that the eigenvalues will be real� We can write
instead of �	�
��

�
C K
K �

�
v � �

��M O
O K

�
v � �	�
	�

An alternative to the above equation is

�
C M
M �

�
v � �

��K O
O M

�
v �	����

where we have set � � ���� By comparing �	�
	� and �	����
we note the interesting fact that M and K have simply been in�
terchanged� This could also have been observed directly from the
original equation �	�
�� by making the change of variable � � ����
For practical purposes� we may therefore select between �	���� and
�	�
	� the formulation that leads to the more economical compu�
tations� We will select �	�
	� in the rest of this chapter�



Non Standard Eigenvalue Problems ���

While the di
erence between �	���� and �	�
	� may be in�
signi�cant� there are important practical implications in chosing
between �	�
�� and �	�
	�� Basically� the decision comes down to
choosing an intrinsically non�Hermitian generalized eigen�problem
with a Hermitian positive de�nite B matrix� versus a generalized
eigen�problem where both matrices in the pair are Hermitian in�

de�nite� In the case whereM is a �positive� diagonal matrix� then
the �rst approach is not only perfectly acceptable� but may even
be the method of choice in case Arnoldi�s method using a poly�
nomial preconditioning is to be attempted� In case all matrices
involved are Hermitian positive de�nite� there are strong reasons
why the second approach is to be preferred� These are explained
by Parlett and Chen ��
��� Essentially� one can use a Lanczos
type algorithm� similar to one of versions described in subsection

��� in spite of the fact that the B matrix that de�nes the inner
products is inde�nite�

Problems

P���� Examine how the eigenvalues and eigenvectors of a pair of
matrices �A�B� change when both A and B are multiplied by the
same nonsingular matrix to the left or to the right�

P���� In section ��� and ��� the shifts ��� �� were assumed to be
such that ������ �� 	� What happens if this were not to be the case

Consider both the linear shifts� Section ��� and Wielandt de�ation ����

P���� Given the right and left eigenvectors u�� and w� associated
with an eigenvalue �� of the pair A�B and such that �Bu�� Bw�� � ��
show that the matrix pair

A� � A� ��Bu�w
H
� B

H � B� � B � ��Au�w
H
� B

H

has the same left and right eigenvectors as A�B� The shifts ��� �� are
assumed to satisfy the condition �� ���� �� 	�

P���� Show that when �A�B� are Hermitian andB is positive de
nite
then C � B��A is self�adjoint with respect to the B�inner product�
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i�e�� that ������ holds�

P���� Redo the proof of Proposition ��� with the usual de
nitions of
eigenvalues �Au � �Bu�� What is gained
 What is lost


P���	 Show that algorithm ��� is a reformulation of Algorithm ����
applied to the pair �A�� B�� where A� � B and B� � �A� �B��

Notes and References� The reader is referred to Stewart and Sun �����
for more details and references on the theory of generalized eigenproblems�
There does not seem to be any exhaustive coverage of the generalized eigen�
value problems� theory and algorithms� in one book� In addition� there seems
to be a dichotomy between the need of users� mostly in 	nite elements mod�
eling� and the numerical methods that numerical analysts develop� One of
the 	rst papers on the numerical solution of quadratic eigenvalue problems is
Borri and Mantegazza �
�� Quadratic eigenvalue problems are rarely solved in
structural engineering� The models are simpli	ed 	rst by neglecting damp�
ing and the leading eigenvalues of the resulting generalized eigenproblem are
computed� Then the eigenvalues of the whole problem are approximated
by performing a projection process onto the computed invariant subspace of
the approximate problem ����� This may very well change in the future� as
models are improving and computer power is making rapid gains� �



Chapter X

Origins of Matrix

Eigenvalue Problems

This chapter gives a brief overview of some applications that give
rise to matrix eigenvalue problems� There are two broad classes of
such applications� The �rst� and by far the largest currently� con�
sists of problems related to the analysis of vibrations� These typ�
ically generate symmetric generalized eigenvalue problems� The
second is the class of problems related to stability analysis� such
as for example the stability analysis of an electrical network� In
general� this second class of problems generates nonsymmetric
matrices� The list of applications discussed in this chapter is by
no means exhaustive� In fact the number of such applications is
constantly growing as the software to solve large eigenvalue prob�
lems improves�
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�� Introduction

The numerical computation of eigenvalues of large matrices is a
problem of major importance in many scienti�c and engineering
applications� We list below just a few of the applications areas
where eigenvalue calculations arise�

� Structural dynamics � Quantum chemistry
� Electrical Networks � Markov chain techniques
� Combustion processes � Chemical reactions
� Macro�economics � Magnetohydrodynamics
� Normal mode techniques � Control theory

This list is certainly not exhaustive� The most commonly solved
eigenvalue problems today are those issued from the �rst item
in the list� namely those problems associated with the vibration
analysis of large structures� Complex structures such as those of
an aircraft or a turbine are represented by �nite element models
involving a large number of degrees of freedom� To compute the
natural frequencies of the structure one usually solves a general�
ized eigenvalue problem of the form Ku � �Mu where typically�
but not always� the sti
ness and mass matrices K and M respec�
tively� are both symmetric positive de�nite�

In the past decade tremendous advances have been achieved
in the solution methods for symmetric eigenvalue problems espe�
cially those related to problems of structures� The well�known
structural analysis package� NASTRAN� which was developed by
engineers in the sixties and seventies now incorporates the state
of the art in numerical methods for eigenproblems such as block
Lanczos techniques�

Similar software for the nonsymmetric eigenvalue problem on
the other hand remains lacking� There seems to be two main
causes for this� First� in structural engineering where such prob�
lems occur in models that include damping� and gyroscopic e
ects�
it is a common practice to replace the resulting quadratic problem
by a small dense problem much less di�cult to solve using heuris�
tic arguments� A second and more general reason is due to a pre�
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vailing view among applied scientists that the large nonsymmetric
eigenvalue problems arising from their more accurate models are
just intractable or di�cult to solve numerically� This often results
in simpli�ed models to yield smaller matrices that can be handled
by standard methods� For example� one�dimensional models may
be used instead of two�dimensional or three�dimensional models�
This line of reasoning is not totally unjusti�ed since nonsymmet�
ric eigenvalue problems can be hopelessly di�cult to solve in some
situations due for example� to poor conditioning� Good numeri�
cal algorithms for non�Hermitian eigenvalue problems tend also to
be far more complex that their Hermitian counterparts� Finally�
as was re�ected in earlier chapters� the theoretical results that
justify their use are scarcer�

The goal of this chapter is mainly to provide motivation and it
is independent of the rest of the book� We will illustrate the main
ideas that lead to the various eigenvalue problems in some of the
applications mentioned above� The presentation is simpli�ed in
order to convey the overall principles�

�� Mechanical Vibrations

Consider a small object of mass m attached to an elastic spring
suspended from the lid of a rigid box� see Figure ����� When
stretched by a distance �l the spring will exert a force of mag�
nitude k�l whose direction is opposite to the direction of the
displacement� Moreover� if there is a �uid in the box� such as
oil� a displacement will cause a damping� or drag force to the
movement� which is usually proportional to the velocity of the
movement� Let us call l the distance of the center of the object
from the top of the box when the mass is at equilibrium and
denote by y the position of the mass at time t� with the initial
position y � � being that of equilibrium� Then at any given time
there are four forces acting on m�

�� The gravity force mg pulling downward�
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� The spring force �k�l � y��

�� The damping force �cdy
dt

�

�� The external force F �t��

By Newton�s law of motion�

m
d�y

dt�
� mg � k�l � y�� c

dy

dt
� F �t� �

m

l

Figure ���� Model problem in mechanical vibrations

If we write the equation at steady state� i�e�� setting y � � and
F �t� � �� we get mg � kl� As a result the equation simpli�es into

m
d�y

dt�
� c

dy

dt
� ky � F �t� � ������

Free vibrations occur when there are no external forces and
when the damping e
ects are negligible� Then ������ becomes

m
d�y

dt�
� ky � � ����
�
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the general solution of which is of the form

y�t� � R cos

�
k

m
t� �

�

which means that the mass will oscillate about its equilibrium
position with a period of 
����� with �� � k�m�

Damped free vibrations include the e
ect of damping but ex�
clude any e
ects from external forces� They lead to the homoge�
neous equation�

m
d�y

dt�
� c

dy

dt
� ky � �

whose characteristic equation is mr� � cr � k � ��
When c� � �km � � then both solutions r�	 r� of the charac�

teristic equation are negative and the general solution is of the
form

y�t� � aer�t � ber�t

which means that the object will return very rapidly to its equi�
librium position� A system with this characteristic is said to be
overdamped �

When c� � �km � � then the general solution is of the form

y�t� � �a� bt�e�ct��m

which corresponds to critical damping� Again the solution will
return to its equilibrium but in a di
erent type of movement from
the previous case� The system is said to be critically damped �

Finally� the case of underdamping corresponds to the situation
when c� � �km 
 � and the solution is of the form

y�t� � e�ct��m �a cos�t� b sin�t�

with

� �

p
�km� c�


m
�

This time the object will oscillate around its equilibrium but the
movement will die out quickly�
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In practice the most interesting case is that of forced vibra�

tions� in which the exterior force F has the form F �t� � F� cos�t�
The corresponding equation is no longer a homogeneous equation�
so we need to seek a particular solution to the equation ������ in
the form of a multiple of cos��t � ��� Doing so� we arrive after
some calculation at the solution

��t� �
F� cos��t� ��q

�k �m���� � c���
������

where
tan � �

c�

k �m��
�

See Exercise P����� for a derivation� The general solution to the
equations with forcing is obtained by adding this particular so�
lution to the general solution of the homogeneous equation seen
earlier�

The above solution is only valid when c �� �� When c � �� i�e��
when there are no damping e
ects� we have what is referred to as
free forced vibrations � In this case� letting ��

� � k
m
� a particular

solution of the nonhomogeneous equation is

F�

m���
� � ���

cos�t

when � �� �� and
F�t


m��
sin��t ������

otherwise� Now every solution is of the form

y�t� � a cos�t� b sin�t�
F�


m��
t sin��t�

The �rst two terms in the above solution constitute a periodic
function but the last term represents an oscillation with a dan�
gerously increasing amplitude�

This is referred to as a resonance phenomenon and has been
the cause of several famous disasters in the past� one of the most
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recent ones being the Tacoma bridge disaster �Nov� �� �	����
Another famous such catastrophe� is that of the Broughton sus�
pension bridge near Manchester England� In ���� a column of
soldiers marched on it in step causing the bridge to enter into res�
onance and collapse� It has since become customary for soldiers
to break step when entering a bridge�

Note that in reality the case c � � is fallacious since some
damping e
ects always exist� However� in practice when c is very
small the particular solution ������ can become very large when
�� � k�m� Thus� whether c is zero or simply very small� danger�
ous oscillations can occur whenever the forcing function F has a

period equal to that of the free vibration case�
We can complicate matters a little in order to introduce matrix

eigenvalue problems by taking the same example as before and
add another mass suspended to the �rst one� as is shown in Figure
���
�

m�

m�

l�

l�

k�

k�

Figure ���� A spring system with two masses�

Assume that at equilibrium� the center of gravity of the �rst
mass is at distance l� from the top and that of the second is at
distance l� from the �rst one� There are now two unknowns� the
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displacement y� from the equilibrium of the �rst mass and the
displacement y� from its equilibrium position of the second mass�
In addition to the same forces as those for the single mass case�
we must now include the e
ect of the spring force pulling from
the other spring� For the �rst mass this is equal to

k��l� � y� � y��	

which clearly corresponds to a displacement of the second mass
relative to the �rst one� A force equal to this one in magnitude
but opposite in sign acts on the second mass in addition to the
other forces� Newton�s law now yields

m�
d�y�
dt�

� m�g � k��l� � y��� c�
dy�
dt

� k��l� � y� � y�� � F��t� 	

m�
d�y�
dt�

� m�g � k��l� � y��� c
dy�
dt

� k��l� � y� � y�� � F��t� �

At equilibrium the displacements as well as their derivatives� and
the external forces are zero� As a result we must have � � m�g�
k�l� � k�l�� and � � m�g � 
k�l�� Hence the simpli�cation

m�
d�y�
dt�

� c�
dy�
dt

� �k� � k��y� � k�y� � F��t� 	 ������

m�
d�y�
dt�

� c�
dy�
dt

� k�y� � 
k�y� � F��t� � ������

Using the usual notation of mechanics for derivatives� equations
������ and ������ can be written in condensed form as

�
m� �
� m�

� �
�y�
�y�

�
�
�
c� �
� c�

� �
�y�
�y�

�
�

�
k� � k� �k�
�k� 
k�

� �
y�
y�

�
�

�
F�

F�

�
������

or�
M �y � C �y �Ky � F ������
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in which M	C and K are 
 � 
 matrices� More generally� one
can think of a very large structure� for example a high rise build�
ing� as a big collection of masses and springs that are interacting
with each other just as in the previous example� In fact equation
������ is the typical equation considered in structural dynamics
but the matricesM	K	 and C can be very large� One of the major
problems in structural engineering it to attempt to avoid vibra�
tions� i�e�� the resonance regime explained earlier for the simple
one mass case� According to our previous discussion this involves
avoiding the eigenfrequencies� �� in the previous example� of the
system� More exactly� an analysis is made before the structure
is build and the proper frequencies are computed� There is usu�
ally a band of frequencies that must be avoided� For example� an
earthquake history of the area may suggest avoiding speci�c fre�
quencies� Here� the proper modes of the system are determined by
simply computing oscillatory solutions of the form y�t� � y�e

i�t

that satis�es the free undamped vibration equation

M �y �Ky � �

or

���My� �Ky� � � �

�� Electrical Networks�

Consider a simple electrical circuit consisting of a resistance or R
Ohms� an inductance of L Henrys and a capacitor of C Farads
connected in series with a generator of E volts� In a closed cir�
cuit� the sum of the voltage drops is equal to the input voltage
E�t�� The voltage drop across the resistance is RI where I is
the intensity while it is L �I across the inductance and Q�C across
the capacitor where Q is the electric charge whose derivative is I�
Therefore the governing equations can be written in terms of Q
as follows�

L �Q �R �Q �Q�C � E�t� 	



��
 Chapter X

which resembles that of mechanical vibrations�

C

L

R

E

��
�
�

S

Figure ���� A simple series electric circuit�

Realistic electric networks can be modeled by a large number
of circuits interconnected to each other� Resonance here might
be sought rather than avoided� as occurs when tuning a radio to
a given electromagnetic wave which is achieved by varying the
capacity C�

The problem of power system networks is di
erent in that
there are instabilities of exponential type that occur in these sys�
tems under small disturbances� The problem there is to control
these instabilities� Although very complex in nature� the problem
of power systems instability can be pictured from the above simple
circuit in which the resistance R is made negative� i�e�� we assume
that the resistance is an active device rather than a passive one�
Then it can be seen that the circuit may become unstable because
the solution takes the form aes�t � bes�t in which s�	 s� may have
positive real parts� which leads to unstable solutions�

�� Quantum Chemistry

In quantum theory the properties of elementary particles such as
electrons� are described by their wave function � which is solution
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of the Schr�odinger equation

�H� � E� ����	�

in which �H is the energy operator� and E is the energy of the
particle� The operator �H is called the Hamiltonian and is de�ned
by

�H � � h�


m
�� q �������

where h is the Plank constant� m is the mass of the particle and
q is the potential energy� The equation ����	� is an eigenvalue
problem involving an unbounded operator� The way in which it
is typically handled is by starting from an initial con�guration

� �
NX
i��

ci
i

and then solve the problem in the subspace spanned by �
i�i�������N �
This amounts to solving the generalized matrix eigenvalue prob�
lem Hc � ESc where the matrices H and S are de�ned by
H � � �H
j	 
i�i�j�����N � S � �
j	 
i�i�j�����N � A better approxi�
mation to the sought eigenfunctions are then obtained and used
as new 
i�s� This is referred to as the con�guration interaction
method a variation of which is Davidson�s method�

�� Stability of Dynamical Systems

Consider a dynamical system governed by the di
erential equation

dy

dt
� F �y� �������

where y � Rn is some vector�valued function of t and F is a
function from Rn to itself� We will assume that the system is
time autonomous in that the variable t does not appear in the
right hand side of �������� Note that F can be a complicated
partial di
erential operator and is usually nonlinear�
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The stability of a nonlinear system that satis�es the equation
�y � F �y� is usually studied in terms of its steady state solution�
The steady state solution  y is� by de�nition� the limit of y�t� as
t tends to in�nity� This limit� when it exists� will clearly depend
on the initial conditions of the di
erential equation� The solution
 y can be found by solving the steady�state equation F �y� � �
because the variation of y with respect to time will tend to zero
at in�nity� A system governed by equation ������� is said to be
locally stable if there exists an � such that

ky�t��  yk � � 	 as t��

whenever ky����  yk 	 �� For obvious reasons� it is said that the
steady state solution is attracting� The important result on the
stability of dynamical systems� is that in most cases the stability
of the dynamical system can be determined by its linear stabil�
ity� i�e�� by the stability of the linear approximation of F at  y�
In other words the system is stable if all the eigenvalues of the
Jacobian matrix

J �

�
�fi� y�

�xj

�
i�j�������n

have negative real parts and unstable if at least one eigenvalue has
a positive real part� If some eigenvalues of J lie on the imaginary
axis� then the stability of the system cannot be determined by its
linear stability� see ����� In this case the system may or may not
be stable depending on the initial condition among other things�

It is often the case that Jacobian matrices are very large non�
symmetric and sparse such as for example when F originates from
the discretization of a partial di
erential operator� This is also
the case when simulating electrical power systems� since the di�
mension of the Jacobian matrices will be equal to the number of
nodes in the network multiplied by the number of unknowns at
each node� which is usually four�
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�� Bifurcation Analysis

The behavior of phenomena arising in many applications can be
modeled by a parameter dependent di
erential equation of the
form

dy

dt
� F �y	 �� �����
�

where y is a vector valued function and � is typically a real pa�
rameter� There are several problems of interest when dealing
with an equation of the form �����
�� A primary concern in some
applications is to determine how stability properties of the sys�
tem will change as the parameter � varies� For example � might
represent a mass that is put on top of a structure to study its
resistance to stress� When this mass increases to reach a critical
value the structure will collapse� Another important application
is when controlling the so�called panel �utter that causes wings of
airplanes to disrupt after strong vibrations� Here the bifurcation
parameter is the magnitude of the velocity of air� Christodoulou
and Scriven have recently solved a rather challenging problem in�
volving bifurcation and stability analysis in �uid �ow ����� In
what is referred to as bifurcation theory a set of analytical and
numerical tools that are used to analyze the change of solution be�
havior as � varies and part of the spectrum of the Jacobian moves
from the left half plane �stable plane� to the right half �unstable�
plane�

A typical situation is when one real eigenvalue passes from
the left plane to the right half plane� Thus� the Jacobian becomes
singular in between� This could correspond to either a !turning
�point or a !real bifurcation �point� The change of behavior of the
solution can happen in several di
erent ways as is illustrated in
Figure �� Often bifurcation analysis amounts to the detection of
all such points� This is done by a marching procedure along one
branch until crossing the primary bifurcation point and taking
all possible paths from there to detect the secondary bifurcation
points etc��
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�d� �f��e�

�c��b��a�

Figure ���� Bifurcation patterns� Stable branches
solid lines� unstable branches dashed lines�

An interesting case is when a pair of complex imaginary eigen�
values cross the imaginary axis� This is referred to as Hopf bifur�
cation� Then at the critical value of � where the crossing occurs�
the system admits a periodic solution� Also� the trajectory of y�
sometimes referred to as the phase curve in mechanics� forms a
closed curve in the y plane referred to as the phase plane �this
can be easily seen for the case n � 
 by using the parameter t to
represent the curve��

�� Chemical Reactions

An increasing number of matrix eigenvalue problems arise from
the numerical simulation of chemical reactions� An interesting
class of such reactions are those where periodic reactions occur
!spontaneously �and trigger a wave like regime� A well�known
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such example is the Belousov�Zhabotinski reaction which is mod�
eled by what is referred to as the Brusselator model� The model
assumes that the reaction takes place in a tube of length one� The
space variable is denoted by r� and the time variable by t� There
are two chemical components reacting with one another� Their
concentrations which are denoted by x�t	 r� and y�t	 r� satisfy the
coupled partial di
erential equations

�x

�t
�

D�

L

��x

�r�
� A�B � �B � ��x � x�y

�y

�t
�

D�

L

��y

�r�
�Bx� x�y

with the initial conditions�

x��	 r� � x��r�	 y��	 r� � y��r�	 � 	 r 	 �

and the boundary conditions

x�t	 �� � x�t	 �� � A	 y�t	 �� � y�t	 �� �
B

A
�

A trivial stationary solution to the above system is  x � A	  y �
B�A� The linear stability of the above system at the stationary
solution can be studied by examining the eigenvalues of the Ja�
cobian of the transformation on the right�hand�side of the above
equations� This Jacobian can be represented in the form

J �

� D�

L
��

��
r

� �B � �� � 
xy x�

B � 
xy D�

L
��

��
r

� x�

�
�

This leads to a sparse eigenvalue problem after discretization� In
fact the problem addressed by chemists is a bifurcation problem�
in that they are interested in the critical value of L at which the
onset of periodic behavior is triggered� This corresponds to a
pair of purely imaginary eigenvalues of the Jacobian crossing the
imaginary axis�
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	� Macro
economics

We consider an economy which consists of n di
erent sectors each
producing one good and each good produced by one sector� We
denote by aij the quantity of good number i that is necessary to
produce one unit of good number j� This de�nes the coe�cient
matrixA known as the matrix of technical coe�cients� For a given
production �x�i�������n� the vector Ax will represent the quantities
needed for this production � and therefore x�Ax will be the net
production� This is roughly Leontiev�s linear model of production�

Next� we would like to take into account labor and salary in the
model� In order to produce a unit quantity of good j� the sector
j employs wj workers and we de�ne the vector of workers w �
�w�	 w�	 � � � 	 wn�

T � Let us assume that the salaries are the same in
all sectors and that they are entirely used for consumption� each
worker consuming the quantity di of good number i� We de�ne
again the vector d � �d�	 d�	 � � � 	 dn�

T � The total consumption of
item i needed to produce one unit of item j becomes

aij � wjdi �

This de�nes the so�called socio�technical matrix B � A � wTd�
The additional assumptions on the model are that the needs of

the workers are independent of their sector� and that there exists
a pricing system that makes every sector pro�table� By pricing
system or strategy� we mean a vector p � �pi�i�������n of the prices
pi of all the goods� The questions are

�� Does there exist a pricing strategy that will ensure a pro�t rate
equal for all sectors" �balanced pro�tability�


� Does there exist a production structure x that ensures the same
growth rate � to each sector" �balanced growth��

The answer is provided by the following theorem�
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Theorem ���� If the matrix B is irreducible there esists a pric�

ing strategy p� a production structure x and a growth rate r � �
that ensure balanced pro�tability and balanced growth and such

that

BTp �
�

� � r
p 	 Bx �

�

� � �
x�

In other words the desired pricing system and production
structure are left and right eigenvectors of the matrix B respec�
tively� The proof is a simple exercise that uses the Perron�Frobenius
theorem� Notice that the pro�t rate r is equal to the growth rate
� � this is referred to as the golden rule of growth�

�� Markov Chain Models

A discrete state� discrete time Markov chain is a random process
with a �nite �or countable� number of possible states taking place
at countable times t�	 t�	 � � � 	 tk � � �� and such that the probability
of an event depends only on the state of the system at the previous
time� In what follows� both times and states will be numbered
by natural integers� Thus� the conditional probability that the
system be in state j at time k� knowing that it was under state
j� at time �� state j�� at state 
 etc��� state jk � � at time k � �
only depends on its state jk � � at the time k � �� or

P �Xk � j j X� � j�	 X� � j�	 � � � 	 Xk�� � jk���

� P �Xk � j j Xk�� � jk���

where P �E� is the probability of the event E and X is a random
variable�

A system can evolve from a state to another by passing through
di
erent transitions� For example� if we record at every minute
the number of people waiting for the �am bus at a given bus�stop�
this number will pass from � at� say� instant � corresponding to



�
� Chapter X

� � �� am to say �� at instant �� corresponding to � am� More�
over� at any given time between instant � and ��� the probability
of another passenger coming� i�e�� of the number of passengers
increasing by one at that instant� only depends on the number of
persons already waiting at the bus�stop�

If we assume that there are N possible states� we can de�ne at
each instant k� an N �N matrix P �k�� called transition probabil�
ity matrix� whose entries p

�k�
ij are the probabilities that a system

passes from state i to state j at time k� i�e��

p
�k�
ij � P �Xk � jjXk�� � i�

The matrix P �k� is such that its entries are nonnegative� and the
row sums are equal to one� Such matrices are called stochastic�
One of the main problems associated with Markov chains is to
determine the probabilities of every possible state of the system
after a very long period of time�

The most elementary question that one faces when studying
such models is� how is the system likely to evolve given that it
has an initial probability distribution q��� � �q

���
� 	 q

���
� 	 � � � 	 q

���
N �"

It is easy to see that at the �rst time q��� � q���P ���� and more
generally

q�k� � q�k���P �k����

Therefore�
q�k� � q���P ���P ��� � � � P �k���P �k��

A homogeneous systems is one whose transition probability
matrix P �k� is independent of time� If we assume that the system
is homogeneous then we have

q�k� � q�k���P �������

and as a result if there is a stationary distribution � � lim q�k�

it must satisfy the equality � � �P � In other words � is a left
eigenvector of P associated with the eigenvalue unity� Conversely�
one might ask what are the conditions under which there is a
stationary distribution�



Origins of Eigenvalue Problems �
�

All the eigenvalues of P do not exceed its ��norm which is
one because P is nonnegative� Therefore if we assume that P
is irreducible then by the Perron�Frobenius theorem� one is the
eigenvalue of largest modulus� and there is a corresponding left
eigenvector � with positive entries� If we scale this eigenvector so
that k�k� � � then this eigenvector will be a stationary probabil�
ity distribution� Unless there is only one eigenvalue with modulus
one� it is not true that a limit of qk de�ned by ������� always ex�
ists� In case there is only eigenvalue of P of modulus one� then qk
will converge to � under mild conditions on the initial probability
distributions q��

Markov chain techniques are very often used to analyze queu�
ing networks and to study the performance of computer systems�

Problems

P��
�� Generalize the model problems of Section � involving masses
and springs to an arbitrary number of masses�

P��
�� Compute the exact eigenvalues �analytically� of the matrix
obtained from discretizing the Chemical reaction model problem in
Section �� Use the parameters listed in Chapter II for the example�

P��
�� Show that when F �t� � F� cos�t then a particular solution
to ��	��� is given by

F�

�k �m���� � c���

h
�k �m��� cos�t� c� sin�t

i
�

Show that ��	��� is an alternative expression of this solution�

Notes and References� Many of the emerging applications of eigenvalue
techniques are related to �uid dynamics and bifurcation theory ���� �
� �
�
�
�� �
�� �
� ���� ���� aero�elasticity ���� ��� ��� �
�� ��� ��� ����� chemical
engineering ���� ��� ��
� ��� ���� and economics ����� An interesting account
of the Tocoma bridge disaster mentioned in Section �� and other similar
phenomena can be found in Brauns�s book ��
�� �
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