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3.1. From Quadratic to Generalized Problems

The most common way of dealing with the above problem is to
transform it into a (linear) generalized eigenvalue problem. For

example, defining
()
v =
u
we can rewrite (9.27) as

(19 1§>v:A<%>?>v. (9.28)

It is clear that there is a large number of different ways of rewrit-

ing (9.27), the one above being one of the simplest. One advantage
of (9.27) is that when M is Hermitian positive definite, as is often
the case, then so also is the second matrix of the resulting gener-
alized problem (9.28). If all matrices involved, namely K, C, and
M, are Hermitian it might be desirable to obtain a generalized
problem with Hermitian matrices, even though this does not in
any way guarantee that the eigenvalues will be real. We can write
instead of (9.28)

(2 §>U:A<?¥ 2)0. (9.29)

An alternative to the above equation is

(]\04 ]\04>UZM<_OK ]\O/[>v (9.30)

where we have set p© = 1/\. By comparing (9.29) and (9.30)
we note the interesting fact that M and K have simply been in-
terchanged. This could also have been observed directly from the
original equation (9.27) by making the change of variable ;1 = 1/\.
For practical purposes, we may therefore select between (9.30) and
(9.29) the formulation that leads to the more economical compu-
tations. We will select (9.29) in the rest of this chapter.
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While the difference between (9.30) and (9.29) may be in-
significant, there are important practical implications in chosing
between (9.28) and (9.29). Basically, the decision comes down to
choosing an intrinsically non-Hermitian generalized eigen-problem
with a Hermitian positive definite B matrix, versus a generalized
eigen-problem where both matrices in the pair are Hermitian in-
definite. In the case where M is a (positive) diagonal matrix, then
the first approach is not only perfectly acceptable, but may even
be the method of choice in case Arnoldi’s method using a poly-
nomial preconditioning is to be attempted. In case all matrices
involved are Hermitian positive definite, there are strong reasons
why the second approach is to be preferred. These are explained
by Parlett and Chen [120]. Essentially, one can use a Lanczos
type algorithm, similar to one of versions described in subsection
2.6, in spite of the fact that the B matrix that defines the inner
products is indefinite.

PROBLEMS

P-9.1 Examine how the eigenvalues and eigenvectors of a pair of
matrices (A, B) change when both A and B are multiplied by the
same nonsingular matrix to the left or to the right.

P-9.2 In section 2.4 and 2.3 the shifts 01,09 were assumed to be
such that 1 — o109 # 0. What happens if this were not to be the case?
Consider both the linear shifts, Section 2.4 and Wielandt deflation 2.3.

P-9.3 Given the right and left eigenvectors u;, and w; associated
with an eigenvalue \; of the pair A, B and such that (Buy, Bw;) = 1,
show that the matrix pair

A1 =A- UlBulw{{BH , Bl =B - UQAulw{{BH

has the same left and right eigenvectors as A, B. The shifts o1, 09 are
assumed to satisfy the condition 1 — o109 # 0.

P-9.4 Show that when (A, B) are Hermitian and B is positive definite
then C = B~ 'A is self-adjoint with respect to the B-inner product,
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i.e., that (9.22) holds.

P-9.5 Redo the proof of Proposition 9.1 with the usual definitions of
eigenvalues (Au = ABu). What is gained? What is lost?

P-9.6 Show that algorithm 9.3 is a reformulation of Algorithm 9.2,
applied to the pair (A, B') where A’ = B and B' = (A — oB).

NOTES AND REFERENCES. The reader is referred to Stewart and Sun [172]
for more details and references on the theory of generalized eigenproblems.
There does not seem to be any exhaustive coverage of the generalized eigen-
value problems, theory and algorithms, in one book. In addition, there seems
to be a dichotomy between the need of users, mostly in finite elements mod-
eling, and the numerical methods that numerical analysts develop. One of
the first papers on the numerical solution of quadratic eigenvalue problems is
Borri and Mantegazza [9]. Quadratic eigenvalue problems are rarely solved in
structural engineering. The models are simplified first by neglecting damp-
ing and the leading eigenvalues of the resulting generalized eigenproblem are
computed. Then the eigenvalues of the whole problem are approximated
by performing a projection process onto the computed invariant subspace of
the approximate problem [76]. This may very well change in the future, as
models are improving and computer power is making rapid gains. o



Chapter X

Origins of Matrix
Eigenvalue Problems

This chapter gives a brief overview of some applications that give
rise to matrix eigenvalue problems. There are two broad classes of
such applications. The first, and by far the largest currently, con-
sists of problems related to the analysis of vibrations. These typ-
ically generate symmetric generalized eigenvalue problems. The
second is the class of problems related to stability analysis, such
as for example the stability analysis of an electrical network. In
general, this second class of problems generates nonsymmetric
matrices. The list of applications discussed in this chapter is by
no means exhaustive. In fact the number of such applications is
constantly growing as the software to solve large eigenvalue prob-
lems improves.
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1. Introduction

The numerical computation of eigenvalues of large matrices is a
problem of major importance in many scientific and engineering
applications. We list below just a few of the applications areas
where eigenvalue calculations arise:

e Structural dynamics e Quantum chemistry
e Electrical Networks e Markov chain techniques
e Combustion processes e Chemical reactions
e Macro-economics e Magnetohydrodynamics

e Normal mode techniques e Control theory

This list is certainly not exhaustive. The most commonly solved
eigenvalue problems today are those issued from the first item
in the list, namely those problems associated with the vibration
analysis of large structures. Complex structures such as those of
an aircraft or a turbine are represented by finite element models
involving a large number of degrees of freedom. To compute the
natural frequencies of the structure one usually solves a general-
ized eigenvalue problem of the form Ku = AMwu where typically,
but not always, the stiffness and mass matrices K and M respec-
tively, are both symmetric positive definite.

In the past decade tremendous advances have been achieved
in the solution methods for symmetric eigenvalue problems espe-
cially those related to problems of structures. The well-known
structural analysis package, NASTRAN, which was developed by
engineers in the sixties and seventies now incorporates the state
of the art in numerical methods for eigenproblems such as block
Lanczos techniques.

Similar software for the nonsymmetric eigenvalue problem on
the other hand remains lacking. There seems to be two main
causes for this. First, in structural engineering where such prob-
lems occur in models that include damping, and gyroscopic effects,
it is a common practice to replace the resulting quadratic problem
by a small dense problem much less difficult to solve using heuris-
tic arguments. A second and more general reason is due to a pre-
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vailing view among applied scientists that the large nonsymmetric
eigenvalue problems arising from their more accurate models are
just intractable or difficult to solve numerically. This often results
in simplified models to yield smaller matrices that can be handled
by standard methods. For example, one-dimensional models may
be used instead of two-dimensional or three-dimensional models.
This line of reasoning is not totally unjustified since nonsymmet-
ric eigenvalue problems can be hopelessly difficult to solve in some
situations due for example, to poor conditioning. Good numeri-
cal algorithms for non-Hermitian eigenvalue problems tend also to
be far more complex that their Hermitian counterparts. Finally,
as was reflected in earlier chapters, the theoretical results that
justify their use are scarcer.

The goal of this chapter is mainly to provide motivation and it
is independent of the rest of the book. We will illustrate the main
ideas that lead to the various eigenvalue problems in some of the
applications mentioned above. The presentation is simplified in
order to convey the overall principles.

2. Mechanical Vibrations

Consider a small object of mass m attached to an elastic spring
suspended from the lid of a rigid box, see Figure 10.1. When
stretched by a distance Al the spring will exert a force of mag-
nitude kAl whose direction is opposite to the direction of the
displacement. Moreover, if there is a fluid in the box, such as
oil, a displacement will cause a damping, or drag force to the
movement, which is usually proportional to the velocity of the
movement. Let us call [ the distance of the center of the object
from the top of the box when the mass is at equilibrium and
denote by y the position of the mass at time ¢, with the initial
position y = 0 being that of equilibrium. Then at any given time
there are four forces acting on m:

1. The gravity force mg pulling downward;
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2. The spring force —k(I + y);

d
3. The damping force —cd—?;;

4. The external force F'(t).

By Newton’s law of motion,

Figure 10.1 Model problem in mechanical vibrations

If we write the equation at steady state, i.e., setting y = 0 and
F(t) =0, we get mg = kl. As a result the equation simplifies into
dy  dy
— +c—+ky=F(t). 10.1
mog T Hky=F() (10.1)
Free vibrations occur when there are no external forces and
when the damping effects are negligible. Then (10.1) becomes

d?y

— + ky = 10.2
mdt2+y 0 (10.2)
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the general solution of which is of the form

0= s (51-)

which means that the mass will oscillate about its equilibrium
position with a period of 27 /wy, with wy = k/m.

Damped free vibrations include the effect of damping but ex-
clude any effects from external forces. They lead to the homoge-
neous equation: ,

m% + c% +ky=0
whose characteristic equation is mr? + c¢r + k = 0.

When ¢? — 4km > 0 then both solutions r;, rs of the charac-
teristic equation are negative and the general solution is of the
form

y(t) = ae™" + be™!

which means that the object will return very rapidly to its equi-
librium position. A system with this characteristic is said to be
overdamped.

When ¢ — 4km = 0 then the general solution is of the form

y(t) = (a + bt)e /*m

which corresponds to critical damping. Again the solution will
return to its equilibrium but in a different type of movement from
the previous case. The system is said to be critically damped.

Finally, the case of underdamping corresponds to the situation
when ¢ — 4km < 0 and the solution is of the form

y(t) = e=/?™ g cos pt + bsin put]
with
Vakm — ¢?
2m '

This time the object will oscillate around its equilibrium but the
movement will die out quickly.

:u:
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In practice the most interesting case is that of forced vibra-
tions, in which the exterior force F has the form F(t) = Fj cos wt.
The corresponding equation is no longer a homogeneous equation,
so we need to seek a particular solution to the equation (10.1) in
the form of a multiple of cos(wt — §). Doing so, we arrive after
some calculation at the solution

Fjy cos(wt — 0)

) = \/(k — mw?)? 4 c2w? (103)
where o
tan5 = m .

See Exercise P-10.3 for a derivation. The general solution to the
equations with forcing is obtained by adding this particular so-
lution to the general solution of the homogeneous equation seen
earlier.

The above solution is only valid when ¢ # 0. When ¢ = 0, i.e.,
when there are no damping effects, we have what is referred to as
free forced vibrations . In this case, letting wg = %, a particular

solution of the nonhomogeneous equation is

F
20 5 cos wt
m(wg — w?)

when w # wy and
Fyt

mwoy

sin wot (10.4)

otherwise. Now every solution is of the form

y(t) = acoswt + b sinwt +

t sin wyt.
2muwy
The first two terms in the above solution constitute a periodic
function but the last term represents an oscillation with a dan-
gerously increasing amplitude.

This is referred to as a resonance phenomenon and has been
the cause of several famous disasters in the past, one of the most
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recent ones being the Tacoma bridge disaster (Nov. 7, 1940).
Another famous such catastrophe, is that of the Broughton sus-
pension bridge near Manchester England. In 1831 a column of
soldiers marched on it in step causing the bridge to enter into res-
onance and collapse. It has since become customary for soldiers
to break step when entering a bridge.

Note that in reality the case ¢ = 0 is fallacious since some
damping effects always exist. However, in practice when ¢ is very
small the particular solution (10.3) can become very large when
w? = k/m. Thus, whether c is zero or simply very small, danger-
ous oscillations can occur whenever the forcing function F has a
period equal to that of the free vibration case.

We can complicate matters a little in order to introduce matrix
eigenvalue problems by taking the same example as before and
add another mass suspended to the first one, as is shown in Figure
10.2.

T
&

la

=
[\

5 Q0D E Q00—

Figure 10.2 A spring system with two masses.

Assume that at equilibrium, the center of gravity of the first
mass is at distance [; from the top and that of the second is at
distance [, from the first one. There are now two unknowns, the
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displacement y; from the equilibrium of the first mass and the
displacement y, from its equilibrium position of the second mass.
In addition to the same forces as those for the single mass case,
we must now include the effect of the spring force pulling from
the other spring. For the first mass this is equal to

kalle — y1 + 2l

which clearly corresponds to a displacement of the second mass
relative to the first one. A force equal to this one in magnitude
but opposite in sign acts on the second mass in addition to the
other forces. Newton’s law now yields

d2 di,
g T g kl(ll—i-yl)—01%+k2(l2+y2—y1)+ﬂ() ;
d2 dys
dt2 = Mmog — kg(lg + yl) - CE - k‘g(lg + Y2 — yl) + FQ(t) .

At equilibrium the displacements as well as their derivatives, and
the external forces are zero. As a result we must have 0 = m;g —
kily + kals, and 0 = mog — 2ksls. Hence the simplification

d? d
m y21 + Clﬂ + (k1 + k2)y1 — kayo = Fi(2) (10.5)
dt dt
d d
dty; +C 5; kayr + 2kays = Fi(t) . (10.6)

Using the usual notation of mechanics for derivatives, equations
(10.5) and (10.6) can be written in condensed form as

(5 m) ()~ (6 2) ()
("o o) (GR) = () won

Mij+Cy+Ky=F (10.8)

or,
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in which M,C and K are 2 x 2 matrices. More generally, one
can think of a very large structure, for example a high rise build-
ing, as a big collection of masses and springs that are interacting
with each other just as in the previous example. In fact equation
(10.8) is the typical equation considered in structural dynamics
but the matrices M, K, and C' can be very large. One of the major
problems in structural engineering it to attempt to avoid vibra-
tions, i.e., the resonance regime explained earlier for the simple
one mass case. According to our previous discussion this involves
avoiding the eigenfrequencies, wy in the previous example, of the
system. More exactly, an analysis is made before the structure
is build and the proper frequencies are computed. There is usu-
ally a band of frequencies that must be avoided. For example, an
earthquake history of the area may suggest avoiding specific fre-
quencies. Here, the proper modes of the system are determined by
simply computing oscillatory solutions of the form y(t) = ye™*
that satisfies the free undamped vibration equation

Mj+Ky=20

or
—w*Myy+ Kyp =0 .

3. Electrical Networks.

Consider a simple electrical circuit consisting of a resistance or R
Ohms, an inductance of L Henrys and a capacitor of C' Farads
connected in series with a generator of F volts. In a closed cir-
cuit, the sum of the voltage drops is equal to the input voltage
E(t). The voltage drop across the resistance is RI where I is
the intensity while it is L1 across the inductance and @Q/C across
the capacitor where () is the electric charge whose derivative is I.
Therefore the governing equations can be written in terms of )
as follows,

LQ+RQ+Q/C=E(t),
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which resembles that of mechanical vibrations.
R

Figure 10.3 A simple series electric circuit.

Realistic electric networks can be modeled by a large number
of circuits interconnected to each other. Resonance here might
be sought rather than avoided, as occurs when tuning a radio to
a given electromagnetic wave which is achieved by varying the
capacity C'.

The problem of power system networks is different in that
there are instabilities of exponential type that occur in these sys-
tems under small disturbances. The problem there is to control
these instabilities. Although very complex in nature, the problem
of power systems instability can be pictured from the above simple
circuit in which the resistance R is made negative, i.e., we assume
that the resistance is an active device rather than a passive one.
Then it can be seen that the circuit may become unstable because
the solution takes the form ae®'’ + be®?! in which s;, s, may have
positive real parts, which leads to unstable solutions.

4. Quantum Chemistry

In quantum theory the properties of elementary particles such as
electrons, are described by their wave function ¥ which is solution
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of the Schrodinger equation
HY = EV (10.9)

in which H is the energy operator, and E is the energy of the
particle. The operator H is called the Hamiltonian and is defined
by

. h2
H=_"A 10.10
5 A ta ( )

where h is the Plank constant, m is the mass of the particle and
q is the potential energy. The equation (10.9) is an eigenvalue
problem involving an unbounded operator. The way in which it
is typically handled is by starting from an initial configuration

N
U= cx
i-1

and then solve the problem in the subspace spanned by (x;)i=1....n-
This amounts to solving the generalized matrix eigenvalue prob-
lem He¢ = ESc where the matrices H and S are defined by
H = (Hxj, Xi)ij=1.8 » S = (Xj, Xi)ij=1..n. A better approxi-
mation to the sought eigenfunctions are then obtained and used
as new Yx;’s. This is referred to as the configuration interaction
method a variation of which is Davidson’s method.

5. Stability of Dynamical Systems

Consider a dynamical system governed by the differential equation

dy

i F(y) (10.11)
where y € R" is some vector-valued function of £ and F' is a
function from R" to itself. We will assume that the system is
time autonomous in that the variable £ does not appear in the
right hand side of (10.11). Note that F' can be a complicated
partial differential operator and is usually nonlinear.
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The stability of a nonlinear system that satisfies the equation
y = F(y) is usually studied in terms of its steady state solution.
The steady state solution ¢ is, by definition, the limit of y(t) as
t tends to infinity. This limit, when it exists, will clearly depend
on the initial conditions of the differential equation. The solution
y can be found by solving the steady-state equation F(y) = 0
because the variation of y with respect to time will tend to zero
at infinity. A system governed by equation (10.11) is said to be
locally stable if there exists an € such that

ly(t) =gl =0, ast — o0

whenever ||y(0) — g|| < e. For obvious reasons, it is said that the
steady state solution is attracting. The important result on the
stability of dynamical systems, is that in most cases the stability
of the dynamical system can be determined by its linear stabil-
ity, i.e., by the stability of the linear approximation of F' at .

In other words the system is stable if all the eigenvalues of the

Jacobian matrix
8 ) 7l
7 { J(y)}
Lj i,J=1,....,n

have negative real parts and unstable if at least one eigenvalue has
a positive real part. If some eigenvalues of J lie on the imaginary
axis, then the stability of the system cannot be determined by its
linear stability, see [66]. In this case the system may or may not
be stable depending on the initial condition among other things.

It is often the case that Jacobian matrices are very large non-
symmetric and sparse such as for example when F' originates from
the discretization of a partial differential operator. This is also
the case when simulating electrical power systems, since the di-
mension of the Jacobian matrices will be equal to the number of
nodes in the network multiplied by the number of unknowns at
each node, which is usually four.
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6. Bifurcation Analysis

The behavior of phenomena arising in many applications can be
modeled by a parameter dependent differential equation of the
form

dy I

i (v, @) (10.12)
where y is a vector valued function and « is typically a real pa-
rameter. There are several problems of interest when dealing
with an equation of the form (10.12). A primary concern in some
applications is to determine how stability properties of the sys-
tem will change as the parameter « varies. For example o might
represent a mass that is put on top of a structure to study its
resistance to stress. When this mass increases to reach a critical
value the structure will collapse. Another important application
is when controlling the so-called panel flutter that causes wings of
airplanes to disrupt after strong vibrations. Here the bifurcation
parameter is the magnitude of the velocity of air. Christodoulou
and Scriven have recently solved a rather challenging problem in-
volving bifurcation and stability analysis in fluid flow [17]. In
what is referred to as bifurcation theory a set of analytical and
numerical tools that are used to analyze the change of solution be-
havior as a varies and part of the spectrum of the Jacobian moves
from the left half plane (stable plane) to the right half (unstable)
plane.

A typical situation is when one real eigenvalue passes from
the left plane to the right half plane. Thus, the Jacobian becomes
singular in between. This could correspond to either a ‘turning
‘point or a ‘real bifurcation 'point. The change of behavior of the
solution can happen in several different ways as is illustrated in
Figure 4. Often bifurcation analysis amounts to the detection of
all such points. This is done by a marching procedure along one
branch until crossing the primary bifurcation point and taking
all possible paths from there to detect the secondary bifurcation
points etc..



316 CHAPTER X

Figure 10.4 Bifurcation patterns. Stable branches
solid lines, unstable branches dashed lines.

An interesting case is when a pair of complex imaginary eigen-
values cross the imaginary axis. This is referred to as Hopf bifur-
cation. Then at the critical value of o where the crossing occurs,
the system admits a periodic solution. Also, the trajectory of y,
sometimes referred to as the phase curve in mechanics, forms a
closed curve in the y plane referred to as the phase plane (this
can be easily seen for the case n = 2 by using the parameter ¢ to
represent the curve).

7. Chemical Reactions

An increasing number of matrix eigenvalue problems arise from
the numerical simulation of chemical reactions. An interesting
class of such reactions are those where periodic reactions occur
‘spontaneously ’and trigger a wave like regime. A well-known
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such example is the Belousov-Zhabotinski reaction which is mod-
eled by what is referred to as the Brusselator model. The model
assumes that the reaction takes place in a tube of length one. The
space variable is denoted by r, and the time variable by ¢. There
are two chemical components reacting with one another. Their
concentrations which are denoted by (¢, r) and y(¢,r) satisfy the
coupled partial differential equations

0 D, 0?

G_f = Tla—rf—i-A—B—(BnLl)x—l—ny
oy Dy 0%y )

% _ 2209 4 By

ot L 8r2+ oy

with the initial conditions,
z(0,7) = zo(r), y(0,7) =1yo(r), 0<r<1

and the boundary conditions

z(t,0) =x(t,1) = A, y(t,0)=y(t, 1) =

|

A trivial stationary solution to the above system is & = A,y =
B/A. The linear stability of the above system at the stationary
solution can be studied by examining the eigenvalues of the Ja-
cobian of the transformation on the right-hand-side of the above
equations. This Jacobian can be represented in the form

L Bigs — (B+1)+ 2y 22
B —2xy D200 %)

This leads to a sparse eigenvalue problem after discretization. In
fact the problem addressed by chemists is a bifurcation problem,
in that they are interested in the critical value of L at which the
onset of periodic behavior is triggered. This corresponds to a
pair of purely imaginary eigenvalues of the Jacobian crossing the
imaginary axis.
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8. Macro-economics

We consider an economy which consists of n different sectors each
producing one good and each good produced by one sector. We
denote by a;; the quantity of good number ¢ that is necessary to
produce one unit of good number j. This defines the coefficient
matrix A known as the matrix of technical coefficients. For a given
production (z);=1,.n, the vector Az will represent the quantities
needed for this production , and therefore x — Ax will be the net
production. This is roughly Leontiev’s linear model of production.

Next, we would like to take into account labor and salary in the
model. In order to produce a unit quantity of good j, the sector
J employs w; workers and we define the vector of workers w =
[wy, wy, ..., w,]T. Let us assume that the salaries are the same in
all sectors and that they are entirely used for consumption, each
worker consuming the quantity d; of good number 2. We define
again the vector d = [dy,dy,...,d,|". The total consumption of
item ¢ needed to produce one unit of item j becomes

Clij + ’LUjdi .

This defines the so-called socio-technical matrix B = A 4+ w’d.

The additional assumptions on the model are that the needs of
the workers are independent of their sector, and that there exists
a pricing system that makes every sector profitable. By pricing
system or strategy, we mean a vector p = (pi)izlym,n of the prices
p; of all the goods. The questions are

1) Does there exist a pricing strategy that will ensure a profit rate
equal for all sectors? (balanced profitability)

2) Does there exist a production structure x that ensures the same
growth rate 7 to each sector? (balanced growth).

The answer is provided by the following theorem.
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Theorem 10.1 If the matriz B is irreducible there esists a pric-
ing strateqy p, a production structure x and a growth rate r = T
that ensure balanced profitability and balanced growth and such
that

1 1
B'p=—p Br= .
p 1+7"p’ T 1—|—7‘x

In other words the desired pricing system and production
structure are left and right eigenvectors of the matrix B respec-
tively. The proofis a simple exercise that uses the Perron-Frobenius
theorem. Notice that the profit rate r is equal to the growth rate
7; this is referred to as the golden rule of growth.

9. Markov Chain Models

A discrete state, discrete time Markov chain is a random process
with a finite (or countable) number of possible states taking place
at countable times %1, t9,..., % ..., and such that the probability
of an event depends only on the state of the system at the previous
time. In what follows, both times and states will be numbered
by natural integers. Thus, the conditional probability that the
system be in state j at time k, knowing that it was under state
j1 at time 1, state jo, at state 2 etc.., state j, — 1 at time k£ — 1
only depends on its state j, — 1 at the time k — 1, or

PXr=j|Xi=71,Xo=172,. .., Xs—1 = Ji—1)
=P(Xy =7 | Xp—1 = Jr—1)

where P(E) is the probability of the event F and X is a random
variable.

A system can evolve from a state to another by passing through
different transitions. For example, if we record at every minute
the number of people waiting for the 7Tam bus at a given bus-stop,
this number will pass from 0 at, say, instant 0 corresponding to
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6:45 am to say 10 at instant 15 corresponding to 7 am. More-
over, at any given time between instant 0 and 15, the probability
of another passenger coming, i.e., of the number of passengers
increasing by one at that instant, only depends on the number of
persons already waiting at the bus-stop.

If we assume that there are N possible states, we can define at
each instant &, an N x N matrix P%), called transition probabil-
ity matrix, whose entries pg?) are the probabilities that a system
passes from state i to state j at time £k, i.e.,

pz(-f) = P(Xy = j| X1 =1)

The matrix P*) is such that its entries are nonnegative, and the
row sums are equal to one. Such matrices are called stochastic.
One of the main problems associated with Markov chains is to
determine the probabilities of every possible state of the system
after a very long period of time.

The most elementary question that one faces when studying
such models is: how is the system likely to evolve given that it
has an initial probability distribution ¢(® = (q§°), AV ,q](g))?
It is easy to see that at the first time ¢(!) = ¢®@P© and more
generally

(k) — o(h=1) plh=1)

q q

Therefore,

¢® = O pO p()  plk=1) pl),

A homogeneous systems is one whose transition probability
matrix P%) is independent of time. If we assume that the system
is homogeneous then we have

¢® =+ Vp (10.13)

and as a result if there is a stationary distribution 7 = lim ¢(®)
it must satisfy the equality 7 = 7P. In other words 7 is a left
eigenvector of P associated with the eigenvalue unity. Conversely,
one might ask what are the conditions under which there is a
stationary distribution.
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All the eigenvalues of P do not exceed its 1-norm which is
one because P is nonnegative. Therefore if we assume that P
is irreducible then by the Perron-Frobenius theorem, one is the
eigenvalue of largest modulus, and there is a corresponding left
eigenvector 7 with positive entries. If we scale this eigenvector so
that ||7||; = 1 then this eigenvector will be a stationary probabil-
ity distribution. Unless there is only one eigenvalue with modulus
one, it is not true that a limit of ¢, defined by (10.13) always ex-
ists. In case there is only eigenvalue of P of modulus one, then g
will converge to m under mild conditions on the initial probability
distributions gy.

Markov chain techniques are very often used to analyze queu-
ing networks and to study the performance of computer systems.

PROBLEMS

P-10.1 Generalize the model problems of Section 2 involving masses
and springs to an arbitrary number of masses.

P-10.2 Compute the exact eigenvalues (analytically) of the matrix
obtained from discretizing the Chemical reaction model problem in
Section 7. Use the parameters listed in Chapter 1I for the example.

P-10.3 Show that when F(t) = Fjcoswt then a particular solution
to (10.1) is given by
Fy

(k — mw?)? + c2w?

Show that (10.3) is an alternative expression of this solution.

[(k — mw?) cos wt + cwsinwt| .

NOTES AND REFERENCES. Many of the emerging applications of eigenvalue
techniques are related to fluid dynamics and bifurcation theory [12, 70, 79,
101, 103, 80, 157, 176] aero-elasticity [33, 34, 51, 102, 67, 68, 156], chemical
engineering [18, 17, 130, 71, 131] and economics [28]. An interesting account
of the Tocoma bridge disaster mentioned in Section 1, and other similar
phenomena can be found in Brauns’s book [10]. A



322 REFERENCES




Bibliography

[1]

2]

F. L. Alvarado. Manipulation and visualization of sparse matri-
ces. ORSA Journal on Computing, 2:186-206, 1990.

W. E. Arnoldi. The principle of minimized iteration in the so-
lution of the matrix eigenvalue problem. Quart. Appl. Math.,
9:17-29, 1951.

O. Axelsson and V. A. Barker. Finite Element Solution of
Boundary Value Problems. Academic Press, Orlando, FL, 1984.

K. J. Bathé and E. L. Wilson. Numerical Methods in Finite
Elements Analysis. Prentice Hall, Englewood Cliffs, New Jersey,
1976.

F. L. Bauer. Das verfahren der treppeniteration und verwandte
verfahren zur losung algebraischer eigenwertprobleme. ZAMP,
8:214-235, 1957.

D. Boley and G. H. Golub. The Lanczos-Arnoldi algorithm and
controllability. Systems and Control Letters, 4:317-324, 1987.

D. Boley, R. Maier, and J. Kim. A parallel QR algorithm for
the nonsymmetric eigenvalue problem. Computer Physics Com-
munications, 53:61-70, 1989.

D. L. Boley, D. G. Truhlar, R. E. Wyatt, and L. E. Collins.
Practical Iterative Methods for Large Scale Computations. North
Holland, Amsterdam, 1989. Proceedings of Minnesota Super-
computer Institute Workshop.



324

REFERENCES

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

M. Borri and P. Mantegazza. Efficient solution of quadratic
eigenproblems arising in dynamic analysis of structures. Comp.
Meth. Appl. Mech. and Engng, 12:19-31, 1977.

M. Braun. Differential equations and their applications.
Springer-Verlag, New York, 1983. Applied mathematical sci-
ences series, Number 15.

C. Brezinski. Padé Type Approzimation and General Orthogonal
Polynomials. Birkhauser-Verlag, Basel-Boston-Stuttgart, 1980.

E. Carnoy and M. Geradin. On the practical use of the Lanczos
algorithm in finite element applications to vibration and bifur-
cation problems. In Axel Ruhe, editor, Proceedings of the Con-
ference on Matriz Pencils, Lulea, Sweden, March 1982, pages
156-176, New York, 1982. University of Umea, Springer Verlag.

T. F. Chan and H. B. Keller. Arclength continuation and multi-
grid techniques for nonlinear eigenvalue problems. STAM Journal
on Scientific and Statistical Computing, 3:173-194, 1982.

F. Chatelin. Spectral Approzimation of Linear Operators. Aca-
demic Press, New York, 1984.

F. Chatelin. Valeurs propres de matrices. Masson, Paris, 1988.

C. C. Cheney. Introduction to Approzimation Theory. McGraw
Hill, NY, 1966.

K. N. Christodoulou and L. E. Scriven. Finding leading modes
of a viscous free surface flow: An asymmetric generalized eigen-
problem. J. Scient. Comput., 3:355-406, 1988.

K. N. Christodoulou and L. E. Scriven. Operability limits of
free surface flow systems by solving nonlinear eigenvalue prob-
lems. Technical report, University of Minnesota Supercomputer
Institute, Minneapolis, MN, 1988.

A. Clayton. Further results on polynomials having least maxi-
mum modulus over an ellipse in the complex plane. Technical

Report AEEW-7348, UKAEA, Harewell-UK, 1963.



REFERENCES 325

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

A. K. Cline, G. H. Golub, and G. W. Platzman. Calculation
of normal modes of oceans using a Lanczos method. In J. R.
Bunch and D. C. Rose, editors, Sparse Matriz Computations,
pages 409-426. Academic Press, 1976.

M. Clint and A. Jennings. The evaluation of eigenvalues and
eigenvectors of real symmetric matrices by simultaneous itera-
tion method. Journal of the Institute of Mathematics and its
Applications, 8:111-121, 1971.

J. Cullum, W. Kerner, and R. Willoughby. A generalized non-
symmetric Lanczos procedure. Computer Physics Communica-
tions, 53, 1989.

J. Cullum and R. Willoughby. Computing eigenvectors and
eigenvalues of large sparse symmetric matrices using Lanczos
tridiagonalization. In G. A. Watson, editor, Numerical Analysis
Proceedings, Dundee 1979, Berlin, 1980. University of Dundee,
Springer Verlag.

J. Cullum and R. Willoughby. A Lanczos procedure for the
modal analysis of very large nonsymmetric matrices. In Pro-
ceedings of the 23rd Conference on Decision and Control, Las
Vegas, 1984.

J. Cullum and R. Willoughby. Lanczos Algorithms for Large
Symmetric Figenvalue Computations. Birkhauser, Basel, 1985.

J. Cullum and R. Willoughby. A practical procedure for comput-
ing eigenvalues of large sparse nonsymmetric matrices. Technical
Report RC 10988 (49366), IBM, T. J. Watson Research center,
Yorktown heights, NY, 1985.

J. Cullum and R. A. Willoughby. Large Scale Eigenvalue Prob-
lems. North-Holland, 1986. Mathematics Studies series, Number
127.

F. d’ Almeida. Numerical study of dynamic stability of macroe-
conomical models- software for MODULECO. Technical report,
INPG- University of Grenoble, Grenoble-France, 1980. Disser-
tation (French).



326

REFERENCES

[29]

[30]

31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart. Re-
orthogonalization and stable algorithms for updating the Gram-
Schmidt QR factorization. Math. Comput, 30:772-795, 1976.

E. R. Davidson. The iterative calculation of a few of the lowest
eigenvalues and corresponding eigenvectors of large real sym-
metric matrices. Journal of Computational Physics, 17:87-94,
1975.

P. J. Davis. Interpolation and Approzimation. Blaisdell,
Waltham, MA, 1963.

J. J. Dongarra, I. S. Duff, D. Sorensen, and H. A. van der Vorst.
Solving Linear Systems on Vector and Shared Memory Comput-
ers. STAM, Philadelphia, PA, 1991.

E. H. Dowell. Nonlinear oscillations of a fluttering plate, II.
ATAA, 5:1856-1862, 1967.

E. H. Dowell. Aeroelasticity of Plates of Shells. Nordhoff Inter-
nat., Leyden, 1975.

I. S. Duff. A survey of sparse matrix research. In Proceedings of
the IEEE, 65, pages 500-535, New York, 1977. Prentice Hall.

I. S. Duff. Ma28 — a set of FORTRAN subroutines for sparse
unsymmetric matrices. Technical Report R8730, A. E. R. E.,
Harewell, England, 1978.

I. S. Duff. A survey of sparse matrix software. In W. R. Cow-
ell, editor, Sources and development of Mathematical software.
Prentice Hall, New York, 1982.

I. S. Duff;, A. M. Erisman, and J. K. Reid. Direct Methods for
Sparse Matrices. Clarendon Press, Oxford, 1986.

I. S. Duff, R. G. Grimes, and J. G. Lewis. Sparse matrix test
problems. ACM Transactions on Mathematical Software, 15:1—
14, 1989.



REFERENCES 327

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

I. S. Duff and J. A. Scott. Computing selected eigenvalues of
sparse matrices using subspace iteration. Technical Report RAL-
91-056, Rutherford Aplleton Lab, Didcot, Oxon, England, 1991.

H. C. Elman, Y. Saad, and P. Saylor. A hybrid Chebyshev
Krylov subspace algorithm for solving nonsymmetric systems
of linear equations. SIAM Journal on Scientific and Statistical
Computing, 7:840-855, 1986.

I. Erdelyi. An iterative least squares algorithm suitable for com-
puting partial eigensystems. SIAM J. on Numer. Anal, B 3. 2,
1965.

T. Ericsson and A. Ruhe. The spectral transformation Lanc-
zos method in the numerical solution of large sparse generalized
symmetric eigenvalue problems. Mathematics of Computations,
35:1251-1268, 1980.

L. E. Eriksson and A. Rizzi. Analysis by computer of the con-
vergence of discrete approximations to the euler equations. In
Proceedings of the 1983 AIAA conference, Denver 1983, pages
407-442, Denver, 1983. ATAA.

B. Fischer and R. W. Freund. On the constrained Chebyshev
approximation problem on ellipses. Journal of Approzimation
Theory, 62:297-315, 1990.

B. Fischer and R. W. Freund. Chebyshev polynomials are not
always optimal. Journal of Approzimation Theory, 65:261-272,
1991.

D. A. Flanders and G. Shortley. Numerical determination of
fundamental modes. J. Appl. Phy., 21:1328-1322, 1950.

J. G. F. Francis. The QR transformations, parts i and ii. Com-
puter J., 4:362-363, and 332-345, 1961-1962.

R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal. An
implementation of the Look-Ahead Lanczos algorithm for non-
Hermitian matrices, Part I. Technical Report 90-11, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts,
1990.



328

REFERENCES

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

R. W. Freund and N. M. Nachtigal. An implementation of the
look-ahead Lanczos algorithm for non-Hermitian matrices, Part
II. Technical Report 90-11, Massachusetts Institute of Technol-
ogy, Cambridge, Massachusetts, 1990.

Y. C. Fung. Introdiction to the Theory of Aeroelasticity. John
Wiley, New York, 1955.

E. Gallopoulos and Y. Saad. On the parallel solution of parabolic
equations. In R. De Groot, editor, Proceedings of the Interna-
tional Conference on Supercomputing 1989, Heraklion, Crete,
June 5-9, 1989. ACM press, 1989.

E. Gallopoulos and Y. Saad. Efficient solution of parabolic equa-
tions by polynomial approximation methods. SIAM Journal on
Scientific and Statistical Computing, 13:1236-1264, 1992.

F. R. Gantmacher. The Theory of Matrices. Chelsea, New York,
1959.

W. Gautschi. On generating orthogonal polynomials. SITAM
Journal on Scientific and Statistical Computing, 3:289-317,
1982.

J. A. George and J. W. Liu. Computer Solution of Large Sparse
Positive Definite Systems. Prentice-Hall, Englewood Cliffs, NJ,
1981.

M. Geradin. On the Lanczos method for solving large structural
eigenvalue problems. Z. Angew. Math. Mech., 59:T127-T129,
1979.

S. Gerschgorin. On bounding the eigenvalues of a matrix (in
german). Izv. Akad. Nauk. SSSR Otd Mat. Estest., 1:749-754,
1931.

S. K. Godunov and G. P. Propkopov. A method of minimal
iteration for evaluating the eigenvalues of an elliptic operator.
Zh. Vichsl. Mat. Mat. Fiz., 10:1180-1190, 1970.



REFERENCES 329

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

G. H. Golub and D. P. O’Leary. Some history of the conju-
gate gradient and Lanczos algorithms: 1948-1976. STAM review,
31:50-102, 1989.

G. H. Golub and R. Underwood. The block Lanczos method
for computing eigenvalues. In J. R. Rice, editor, Mathematical
Software III, pages 361-377. Academic press, New York, 1977.

G. H. Golub, R. Underwood, and J. H. Wilkinson. The Lanc-
zos algorithm for the symmetric Az = ABx problem. Technical
Report STAN-CS-72-720, Stanford University, Stanford, Cali-
fornia, 1972.

G. H. Golub and C. Van Loan. Matriz Computations. The John
Hopkins University Press, Baltimore, 1989.

G. H. Golub and J. H. Wilkinson. Ill-conditioned eigensystems
and the computation of the Jordan canonical form. STAM review,
18:578-619, 1976.

W. B. Gragg. Matrix interpretation and applications of contin-
ued fraction algorithm. Rocky Mountain J. of Math., 4:213-225,
1974.

J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dy-
namical Systems, and Bifurcation of Vector Fields. Springer
Verlag, New York, 1983.

K. K. Gupta. Eigensolution of damped structural systems. In-
ternat. J. Num. Meth. Engng., 8:877-911, 1974.

K. K. Gupta. On a numerical solution of the supersonic panel
flutter eigenproblem. Internat. J. Num. Meth. Engng., 10:637—
645, 1976.

P. R. Halmos. Finite-Dimensional Vector Spaces. Springer Ver-
lag, New York, 1958.

J. Heyvaerts, J. M. Lasry, M. Schatzman, and P. Witomski.
Solar flares: A nonlinear problem in an unbounded domain. In
C. Bardos, J. M. Lasry, and M. Schatzman, editors, Bifurcation



330

REFERENCES

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

and nonlinear eigenvalue problems, Proceedings, pages 160-192,
New York, 1978. Springer Verlag. Lecture notes in Mathematics
Series.

H. Hlavacek and H. Hofmann. Modeling of chemical reactors
XVI. Chemical Eng. Sci., 25:1517-1526, 1970.

D. H. Hodges. Aeromechanical stability of analysis for bearing-
less rotor helicopters. J. Amer. Helicopter Soc., 24:2-9, 1979.

A. S. Householder. Theory of Matrices in Numerical Analysis.
Blaisdell Pub. Co., Johnson, CO, 1964.

I. Ipsen and Y. Saad. The impact of parallel architectures on
the solution of eigenvalue problems. In J. Cullum and R. A.
Willoughby, editors, Large Scale Eigenvalue Problems, Amster-
dam, The Netherlands, 1986. North-Holland, Vol. 127 Mathe-
matics Studies Series.

A. Jennings. Matriz Computations for Engineers and Scientists.
Wiley, New York, 1977.

A. Jennings. Eigenvalue methods and the analysis of structural
vibrations. In I. S. Duff, editor, Sparse Matrices and their Uses,
pages 109-138. Academic Press, New York, 1981.

A. Jennings and W. J. Stewart. Simultaneous iteration for par-
tial eigensolution of real matrices. J. Math. Inst. Appl., 15:351—
361, 1980.

A. Jennings and W. J. Stewart. A simultaneous iteration algo-
rithm for real matrices. ACM, Trans. of Math. Software, 7:184—
198, 1981.

A. Jepson. Numerical Hopf Bifurcation. PhD thesis, Cal. Inst.
Tech., Pasadena, CA., 1982.

D. D. Joseph and D. H. Sattinger. Bifurcating time periodic
solutions and their stability. Arch. Rat. Mech. Anal,, 45:79-109,
1972.



REFERENCES 331

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

W. Kahan and B. N. Parlett. How far should you go with the
Lanczos process? In J. R. Bunch and D. C. Rose, editors, Sparse
Matriz Computations, pages 131-144. Academic Press, 1976.

W. Kahan, B. N. Parlett, and E. Jiang. Residual bounds on
approximate eigensystems of nonnormal matrices. SIAM Journal
on Numerical Analysis, 19:470-484, 1982.

S. Kaniel. Estimates for some computational techniques in linear
algebra. Mathematics of Computations, 20:369-378, 1966.

T. Kato. On the upper and lower bounds of eigenvalues. J. Phys.
Soc. Japan, 4:334-339, 1949.

T. Kato. Perturbation Theory for Linear Operators. Springer
Verlag, New York, 1965.

L. Kleinrock. Queueing Systems, vol. 2: Computer Applications.
John Wiley and Sons, New York, London, 1976.

M. A. Krasnoselskii et al. Approzimate Solutions of Operator
Equations. Wolters-Nordhoff, Groningen, 1972.

A. N. Krylov. On the numerical solution of equations whose
solution determine the frequency of small vibrations of material
systems (in russian). Izv. Akad. Nauk. SSSR Otd Mat. Estest.,
1:491-539, 1931.

C. Lanczos. An iteration method for the solution of the eigen-
value problem of linear differential and integral operators. Jour-
nal of Research of the National Bureau of Standards, 45:255-282,
1950.

C. Lanczos. Chebyshev polynomials in the solution of large-scale
linear systems. In Proceedings of the ACM, pages 124-133, 1952.

C. Lanczos. Solution of systems of linear equations by mini-
mized iterations. Journal of Research of the National Bureau of
Standards, 49:33-53, 1952.



332

REFERENCES

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

C. Lanczos. Applied Analysis. Prentice Hall, Englewood Cliffs,
New Jersey, 1956. Also available from Dover Publications, New
York, (1988).

C. Lanczos. Iterative solution of large-scale linear systems. .J.
Soc. Indust. Appl. Math, 6:91-109, 1958.

J. G. Lewis and H. D. Simon. Numerical experience with the
spectral transformation Lanczos. Technical Report MM-TR-16,
Boeing Computer Services, Seattle, WA, 1984.

S. S. Lo, B. Philippe, and A. Sameh. A multiprocessor algorithm
for symmetric tridiagonal eigenvaluie problem. SIAM J. Stat.
Sci. Comput., 8:3155-s165, 1987.

D. E. Longsine and S. F. Mc Cormick. Simultaneous Rayleigh
quotient minimization methods for Az = ABz. Linear Algebra
and its Applications, 34:195-234, 1980.

G. G. Lorentz. Approzimation of functions. Holt, Rinehart -
Winston, New York, 1966.

T. A. Manteuffel. An iterative method for solving nonsymmetric
linear systems with dynamic estimation of parameters. Techni-
cal Report UTUCDCS-75-758, University of Illinois at Urbana-
Champaign, Urbana, Ill., 1975. Ph. D. dissertation.

T. A. Manteuffel. The Tchebychev iteration for nonsymmetric
linear systems. Numerische Mathematik, 28:307-327, 1977.

T. A. Manteuffel. Adaptive procedure for estimation of param-
eter for the nonsymmetric Tchebychev iteration. Numerische
Mathematik, 28:187-208, 1978.

J. E. Marsden and M. Mc Cracken. The Hopf Bifurcation and
its Applications. Springer Verlag, New York, 1976.

Y. Matsuzaki and Y. C. Fung. Unsteady fluid dynamic forces
on a simply supported circular cylinder of finite length convey-
ing a flow, with applications to stability. Journal of Sound and
Vibrations, 54:317-330, 1977.



REFERENCES 333

103

[104]

[105]

[106]

107]

[108]

109

[110]

[111]

[112]

R. K. Mehra and J. V. Caroll. Bifurcation analysis of aircraft
high angle-of-attack flight dynamics. In P. J. Holmes, editor,
New Approaches to Nonlinear Problems in Dynamics - Proceed-
ings of the Asilomar Conference Ground, Pacific Grove, Califor-
nia 1979, pages 127-146. The Engineering Foundation, STAM,
1980.

R. B. Morgan and D. S. Scott. Generalizations of davidson’s
method for computing eigenvalues of sparse symmetric matrices.
SIAM Journal on Scientific and Statistical Computing, 7:817—
825, 1986.

R. Natarajan. An Arnoldi-based iterative scheme for nonsym-
metric matrix pencils arising in finite element stability problems.
Journal of Computational Physics, 100:128-142, 1992.

R. Natarajan and A. Acrivos. The instability of the steady flow
past spheres and disks. Technical Report RC 18235, IBM Res.
div., T. J. Watson Res. ctr, Yorktown Heights, 1992.

R. K. Nesbet. Algorithm for diagonalization of large matrices.
J. Chem. Phys., 42:311-312, 1965.

B. Nour-Omid. Applications of the Lanczos algorithm. Com-
puter Physics Communications, 53, 1989.

B. Nour-Omid, B. N. Parlett, T. Ericsson, and P. S. Jensen.
How to implement the spectral transformation. Math. Comput.,
48:663-673, 1987.

B. Nour-Omid, B. N. Parlett, and R. Taylor. Lanczos versus sub-
space iteration for the solution of eigenvalue problems. Technical
Report UCB/SESM-81/04, University of California at Berkeley,
Dept. of Civil Engineering, Berkeley, California, 1980.

O. Osterby and Z. Zlatev. Direct Methods for Sparse Matrices.
Springer Verlag, New York, 1983.

C. C. Paige. The computation of eigenvalues and eigenvectors
of very large sparse matrices. PhD thesis, London University,
Institute of Computer Science, London, England, 1971.



334

REFERENCES

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

C. C. Paige. Practical use of the symmetric Lanczos process with
reorthogonalization. BIT, 10:183-195, 1971.

C. C. Paige. Computational variants of the Lanczos method for
the eigenproblem. Journal of the Institute of Mathematics and
its Applications, 10:373-381, 1972.

P. C. Papanastasiou. Numerical analysis of localization phenom-
ena with application to deep boreholes. PhD thesis, University of
Minnesota, Dept. Civil and Mineral Engineering, Minneapolis,
MN, 1990.

B. N. Parlett. The Rayleigh quotient iteration and some gener-
alizations for nonnormal matrices. Math. Comput., 28:679-693,
1974.

B. N. Parlett. How to solve (K —AM)z = 0 for large K and M.
In E. Asbi et al., editor, Proceedings of the 2nd International
Congress on Numerical Methods for Engineering (GAMNI 2),
pages 97-106, Paris, 1980. Dunod.

B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice
Hall, Englewood Cliffs, 1980.

B. N. Parlett. The software scene in the extraction of eigenvalues
from sparse matrices. SIAM J. of Sci. Stat. Comput., 5(3):590—
604, 1984.

B. N. Parlett and H. C. Chen. Use of an indefinite inner product
for computing damped natural modes. Technical Report PAM-
435, Center for Pure and Applied Mathematics, University of
California at Berkeley, Berkeley, CA, 1988.

B. N. Parlett and B. Nour-Omid. The use of refined error bounds
when updating eigenvalues of tridiagonals. Linear Algebra and
its Applications, 68:179-219, 1985.

B. N. Parlett and J. K. Reid. Tracking the progress of the Lanc-
zos algorithm for large symmetric eigenproblems. IMA J. Num.
Anal., 1:135-155, 1981.



REFERENCES 335

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

B. N. Parlett and Y. Saad. Complex shift and invert strate-

gies for real matrices. Linear Algebra and its Applications,
88/89:575-595, 1987.

B. N. Parlett and D. Scott. The Lanczos algorithm with selective
orthogonalization. Mathematics of Computations, 33:217-238,
1979.

B. N. Parlett, D. R. Taylor, and Z. S. Liu. A look-ahead Lanczos
algorithm for nonsymmetric matrices. Mathematics of Compu-
tation, 44:105-124, 1985.

S. Petiton. Parallel subspace method for non-Hermitian eigen-
problems on the connection machine (CM-2). Technical Re-
port YALEU/DCS/RR-859, Yale University, Computer Science
dept., New Haven, CT, 1991.

B. Philippe and Y. Saad. Solving large sparse eigenvalue prob-
lems on supercomputers. In Proceedings of International Work-
shop on Parallel Algorithms and Architectures, Bonas, France
Oct. 3-6 1988, Amsterdam, 1989. North-Holland.

B. Philippe, Y. Saad, and W. J. Stewart. Numerical meth-
ods in Markov chain modeling. Journal of Operations Research,
40(6):1156-1179, 1992.

S. Pissanetzky. Sparse Matriz Technology. Academic Press, New
York, 1984.

A. B. Poore. A model equation arising in chemical reactor theory.
Arch. Rat. Mech. Anal., 52:358-388, 1973.

P. Raschman, M. Kubicek, and M. Maros. Waves in distributed
chemical systems: experiments and computations. In P. J.
Holmes, editor, New Approaches to Nonlinear Problems in Dy-
namics - Proceedings of the Asilomar Conference Ground, Pa-
cific Grove, California 1979, pages 271-288. The Engineering
Foundation, STAM, 1980.

T. J. Rivlin. The Chebyshev Polynomials: from Approzimation
Theory to Algebra and Number Theory. J. Wiley and Sons, New
York, 1990.



336

REFERENCES

[133]

[134]

[135]

[136]

[137]

[138]

[139)

[140]

[141]

[142]

A. Ruhe. Numerical methods for the solution of large sparse
eigenvalue problems. In V. A. Barker, editor, Sparse Ma-
trix Techniques, Lect. Notes Math. 572, pages 130-184, Berlin-
Heidelberg-New York, 1976. Springer Verlag.

A. Ruhe. Implementation aspects of band Lanczos algorithms for
computation of eigenvalues of large sparse symmetric matrices.

Mathematics of Computations, 33:680-687, 1979.

A. Ruhe. Rational Krylov sequence methods for eigenvalue
computations. Linear Algebra and its Applications, 58:391-405,
1984.

H. Rutishauser. Theory of gradient methods. In Refined Iter-
ative Methods for Computation of the Solution and the Eigen-
values of Self-Adjoint Boundary Value Problems, pages 24—49,
Basel-Stuttgart, 1959. Institute of Applied Mathematics, Zurich,
Birkhauser Verlag.

H. Rutishauser. Computational aspects of f. 1. bauer’s simulta-
neous iteration method. Numerische Mathematik, 13:4-13, 1969.

Y. Saad. On the rates of convergence of the Lanczos and the
block Lanczos methods. SIAM J. Numer. Anal., 17:687-706,
1980.

Y. Saad. Variations on Arnoldi’s method for computing eigenele-
ments of large unsymmetric matrices. Linear Algebra and its
Applications, 34:269-295, 1980.

Y. Saad. Krylov subspace methods for solving large unsymmetric
linear systems. Mathematics of Computation, 37:105-126, 1981.

Y. Saad. Projection methods for solving large sparse eigenvalue
problems. In B. Kagstrom and A. Ruhe, editors, Matriz Pencils,
proceedings, Pitea Havsbad, pages 121-144, Berlin, 1982. Univer-
sity of Umea, Sweden, Springer Verlag. Lecture notes in Math.
Series, Number 973.

Y. Saad. Least-squares polynomials in the complex plane with
applications to solving sparse nonsymmetric matrix problems.



REFERENCES 337

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

Technical Report 276, Yale University, Computer Science Dept.,
New Haven, Connecticut, 1983.

Y. Saad. Chebyshev acceleration techniques for solving non-
symmetric eigenvalue problems. Mathematics of Computation,
42:567-588, 1984.

Y. Saad. Least squares polynomials in the complex plane and
their use for solving sparse nonsymmetric linear systems. STAM
Journal on Numerical Analysis, 24:155-169, 1987.

Y. Saad. Projection and deflation methods for partial pole as-
signment in linear state feedback. IFEE Trans. Aut. Cont.,
33:290-297, 1988.

Y. Saad. Krylov subspace methods on supercomputers. SIAM
Journal on Scientific and Statistical Computing, 10:1200-1232,
1989.

Y. Saad. Numerical solution of large nonsymmetric eigenvalue
problems. Computer Physics Communications, 53:71-90, 1989.

Y. Saad. Numerical solution of large nonsymmetric eigenvalue
problems. Computer Physics Communications, 53:71-90, 1989.

Y. Saad. Numerical solution of large Lyapunov equations. In
M. A. Kaashoek, J. H. van Schuppen, and A. C. Ran, editors,
Signal Processing, Scattering, Operator Theory, and Numerical
Methods. Proceedings of the international symposium MTNS-89,
vol I1I, pages 503-511, Boston, 1990. Birkhauser.

Y. Saad. An overview of Krylov subspace methods with ap-
plications to control problems. In M. A. Kaashoek, J. H. van
Schuppen, and A. C. Ran, editors, Signal Processing, Scatter-
ing, Operator Theory, and Numerical Methods. Proceedings of
the international symposium MTNS-89, vol III, pages 401-410,
Boston, 1990. Birkhauser.

Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computa-
tions. Technical Report 90-20, Research Institute for Advanced
Computer Science, NASA Ames Research Center, Moffet Field,
CA, 1990.



338

REFERENCES

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

Y. Saad. Analysis of some Krylov subspace approximations to
the matrix exponential operator. SIAM Journal on Numerical
Analysis, 29:209-228, 1992.

M. Sadkane. Analyse Numérique de la Méthode de Davidson.
PhD thesis, Université de Rennes, UER mathematiques et In-
formatique, Rennes, France, 1989.

M. Said, M. A. Kanesha, M. Balkanski, and Y. Saad. Higher
excited states of acceptors in cubic semiconductors. Physical
Review B, 35(2):687-695, 1988.

A. H. Sameh and J. A. Wisniewski. A trace minimization algo-
rithm for the generalized eigenvalue problem. SIAM Journal on
Numerical Analysis, 19:1243-1259, 1982.

G. Sander, C. Bon, and M. Geradin. Finite element analysis
of supersonic panel flutter. Internat. J. Num. Meth. Engng.,
7:379-394, 1973.

D. H. Sattinger. Bifurcation of periodic solutions of the navier
stokes equations. Arch. Rat. Mech. Anal,, 41:68-80, 1971.

D. S. Scott. Analysis of the symmetric Lanczos process. PhD
thesis, University of California at Berkeley, Berkeley, CA., 1978.

D. S. Scott. Solving sparse symmetric generalized eigenvalue
problems without factorization. SIAM J. Num. Anal., 18:102—
110, 1981.

D. S. Scott. The advantages of inverted operators in Rayleigh-
Ritz approximations. SIAM J. on Sci. and Statist. Comput.,
3:68-75, 1982.

D. S. Scott. Implementing Lanczos-like algorithms on Hypercube
architectures. Computer Physics Communications, 53:271-282,
1989.

E. Seneta. Computing the stationary distribution for infinite
Markov chains. In H. Schneider A. Bjorck, R. J. Plemmons,
editor, Large Scale Matriz Problems, pages 259-267. Elsevier
North Holland, New York, 1981.



REFERENCES 339

163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

A. H. Sherman. Yale Sparse Matrix Package — user’s guide. Tech-
nical Report UCID-30114, Lawrence Livermore National Lab.,
Livermore, CA, 1975.

H. D. Simon. The Lanczos Algorithm for Solving Symmetric
Linear Systems. PhD thesis, University of California at Berkeley,
Berkeley, CA., 1982.

H. D. Simon. The Lanczos algorithm with partial reorthogonal-
ization. Mathematics of Computations, 42:115-142, 1984.

D. C. Sorensen. Implicit application of polynomial filters in a
k-step Arnoldi method. Technical Report TR90-27, Rice Uni-
versity, Department of Math. Sci., Houston, TX, 1990.

G. W. Stewart. Introduction to Matriz Computations. Academic
Press, New York, 1973.

G. W. Stewart. A bibliographical tour of the large, sparse, gen-
eralized eigenvalue problem. In J. R. Bunch and D. C. Rose,
editors, Sparse Matriz Computations, pages 113-130, New York,
1976. Academic Press.

G. W. Stewart. Simultaneous iteration for computing invariant
subspaces of non-Hermitian matrices. Numerische Mathematik,
25:123-136, 1976.

G. W. Stewart. SRRIT - a FORTRAN subroutine to calculate
the dominant invariant subspaces of a real matrix. Technical Re-
port TR-514, University of Maryland, College Park, MD, 1978.

G. W. Stewart. Perturbation bounds for the definite generalized
eigenvalue problem. Linear Algebra and its Applications, 23:69—
85, 1979.

G. W. Stewart and J. G. Sun. Matriz Perturbation Theory.
Academic Press, New York, 1990.

E. L. Stiefel. Kernel polynomials in linear algebra and their ap-
plications. U. S. National Bureau of Standards, Applied Mathe-
matics Series, 49:1-24, 1958.



340

REFERENCES

[174]

[175]

[176]

[177]

[178]

179

[180]

[181]

[182]

[183]

[184]

D. Taylor. Analysis of the look-ahead Lanczos algorithm. PhD
thesis, Department of Computer Science, Berkeley, CA, 1983.

G. Temple. The accuracy of Rayleigh’s method of calculating
the natural frequencies of vibrating systems. Proc. Roy. Soc.
London Ser. A, 211:204-224, 1958.

H. Troger. Application of bifurcation theory to the solution of
nonlinear stability problems in mechanical engineering. In Nu-
merical methods for bifurcation problems, pages 525-546, Basel,
1984. STAM, Birkhauser Verlag, ISNM 70.

J. S. Vandergraft. Generalized Rayleigh methods with applica-
tions to finding eigenvalues of large matrices. Linear Algebra and
its Applications, 4:353-368, 1971.

R. S. Varga. Matriz Iterative Analysis. Prentice Hall, Englewood
Cliffs, NJ, 1962.

Y. V. Vorobyev. Method of Moments in Applied Mathematics.
Gordon and Breach, New York, 1965.

E. L. Wachspress. Iterative Solution of Elliptic Systems and Ap-
plications to the Neutron Equations of Reactor Physics. Prentice
Hall, Englewood Cliffs, NJ, 1966.

H. F. Walker. Implementation of the GMRES method using
Householder transformations. SIAM Journal on Scientific Com-
puting, 9:152-163, 1988.

O. Widlund. A Lanczos method for a class of non-symmetric sys-
tems of linear equations. SIAM Journal on Numerical Analysis,
15:801-812, 1978.

J. H. Wilkinson. The Algebraic FEigenvalue Problem. Clarendon
Press, Oxford, 1965.

J. H. Wilkinson and C. Reinsch. Handbook for automatic com-
putation, Vol. II, Linear Algebra. Springer Verlag, New York,
1971.



REFERENCES 341

[185]

[186]

[187]

J. A. Wisniewski. A Parallel Algorithm for Solving Az = ABx.
PhD thesis, University of Illinois at Urbana Champaign, 1980.

H. E. Wrigley. Accelerating the jacobi method for solving simul-
taneous equations by Chebyshev extrapolation when the eigen-
values of the iteration matrix are complex. Computer Journal,
6:169-176, 1963.

7. Zlatev, K. Schaumburg, and J. Wasniewski. A testing scheme
for subroutines solving large linear problems. Computers and
Chemistry, 5:91-100, 1981.



Index

A
a-posteriori error bounds, 76
addition of matrices, 3
algebraic multiplicity, 14
angle between a vector and a sub-
space, 62, 130
angle between vectors, 62
approximate problem, 127, 170
ARNINV, 263
ARNIT, 271
ARNLS, 270
Arnoldi’s method, 172, 263
as a purification process, 226
breakdown of, 174
convergence, 204-213
with implicit deflation, 179
with modified Gram-Schmidt,
176
iterative version, 179
practical implementations, 176
Arnoldi-Chebyshev iteration, 226

B

banded matrices, 6

bandwidth of a matrix, 6

basis of a subspace, 11

Bauer-Fike theorem, 77

best uniform approximation in C,
205

342

bidiagonal matrices, 6
bifurcation analysis, 315
bifurcation, 315

bifurcation, Hopf, 316

real bifurcation point, 315

turning point, 315
biorthogonal vectors, 64, 188
block Arnoldi algorithm, 196

Ruhe’s variant, 197
block diagonal matrices, 7
block Gram-Schmidt, 197
block Krylov Methods, 168, 195
block Lanczos, 304
block-tridiagonal matrices, 7
breakdown in the Lanczos algorithm,

192-194

incurable, 193

serious, 193

‘lucky’, 192
Brusselator model, 317

C
cancellations, 177
canonical forms of matrices, 14-25
diagonal, 15
Jordan, 15
Schur, 23
triangular, 16
Cauchy-Schwartz inequality, 8



INDEX

343

characteristic polynomial, 4,170
in Krylov methods, 170
Chebsyshev-Subspace iteration, 237
Chebyshev bases, 243
Chebyshev iteration, 220
algorithm, 223
basic scheme, 220
convergence ratio, 224
convergence, 224
damping coefficients, 224
optimal ellipse in, 228
with Arnodi’s method, 226
Chebyshev polynomials, 141-148
optimality, 146
asymptotic optimality, 148
complex, 143-144
real, 142-143
relation with ellipses, 144
chemical reaction example, 50, 267
chemical reactions, 316
condition number, 93
of an eigenvalue, 93
of an eigenvector, 96
of an invariant subspace, 100
configuration interaction method,
313
conjugate gradient method, 47
consistent matrix norms, 9
coordinate storage scheme, 40
Courant characterization, 32, 132
Cramer’s rule, 66
critical points, 206
CSC storage format, 42
CSR storage format, 42

D

damping, 305-307

Davidson’s method, 272-276, 313
convergence, 275

defective eigenvalue, 15

deflated Arnoldi-Chebyshev algo-

rithm, 236
deflation techniques, 117, 235, 292

with several vectors, 122
derogatory, 15
determinant, 3
diagonal form of matrices, 16
diagonal matrices, 6
diagonal storage format, 43
diagonalizable matrices, 16
direct sum of subspaces, 11, 60
distances between subspaces, 63
double orthogonalization, 177
double shift approach, 261
Dunford integral, 67
dynamical systems, 313

locally stable solutions, 314

E
eigenspace, 12
eigenvalue, 3
index, 17
averages, analyticity, 73
branches, 74
pair, 284
eigenvector, 4
left, 5
right, 5
electrical networks, 311
ellipses for Chebyshev iteration, 222
Ellpack-Itpack storage format, 43
enhanced initial vector, 227
equivalent pencils, 286
error bounds, 76
essential convergence, 153
essential singularities, 66
exponential propagation operator,
277

F

field of values, 28

first resolvent equality, 67
Frobenius norm, 9

G
Galerkin condition, 127
Galerkin process, 268



344

INDEX

gap between subspaces, 63

generalized Arnoldi’s method, 276

generalized eigenvalue problem, 258,
282, 300

generalized eigenvalue, 283-284

generalized eigenvector, 17

geometric multiplicity, 15

Gerschgorin discs, 103

Gerschgorin’s theorem, 102

grade of a vector, 169, 226

Gram matrices, 244

Gram-Schmidt procedure, 12

H

Haar conditions, 205, 207

HARWELL library, 47

Harwell-Boeing collection, 47, 52

Hausdorft’s convex hull theorem,
28

Hermitian definite matrix pairs, 295

Hermitian matrices, 5, 29

Hessenberg matrices, 6

Holder norms, 8

Hopf bifurcation, 316

Hotelling’s deflation, 119

Householder orthogonalization, 177

I

idempotent, 11 , 60

implicit deflation, 179

indefinite inner product, 193

index of an eigenvalue, 17

indirect addressing, 40

instability, in power systems, 312

invariant subspace, 11, 128

invariant subspace, 128

inverse iteration, 114

inverse power method, 114

iterative Arnoldi method, 179
example, 271

J
Jacobian matrix, 314
Jordan block, 18

Jordan box, 19

Jordan canonical form, 17
Jordan curve, 67

Jordan submatrix, 19
Joukowski mapping, 144

K

Kahan, Jiang, Parlett theorem, 86-
87

Kahan, Parlett, Jiang error bound,
79

Kato-Temple’s theorem, 81

kernel polynomials, 248

kernel, 11

Krylov subspaces, 168

Krylov Subspace Methods, 168-217

characteristic property, 171

L
Lanczos algorithm, 183-184, 198,
296
breakdown, 191
Hermitian case, 183
look-ahead version, 192
practical implementation, 192
and orthogonal polynomials, 185
convergence, 198-204.
for matrix pairs, 297
incurable breakdown, 193
loss of orthogonality, 185
modified Gram-Schmidt version,
184

non-Hermitian case, 186
partial reorthogonalization, 185
selective reorthogonalization, 185
serious breakdown in, 193

least squares Arnoldi algorithm, 239,

251

least squares polynomials, 240
Gram matrices, 244

least squares preconditioning, 268

left eigenvector, 5, 286

left subspace, 126, 138



INDEX

345

Leontiev’s model, 318

linear mappings, 3

linear perturbations of a matrix,
71

linear shifts for matrix pairs, 162,
293

linear span, 11

linear stability, 314

localization of eigenvalues, 101

locking technique, 160

locking vectors, 160

look-ahead Lanczos algorithm, 192
- 194

lower triangular matrices, 6

lucky breakdown, 192

M
MA28 package, 47
macro-economics, 318
Markov chain models, 319
matrices, 3
matrix exponentials, 277
matrix pair, 283
matrix pencil, 260, 283
matrix reduction, 14
mechanical vibrations, 305
min-max problem, 221
min-max theorem, 30
modified Gram-Schmidt, 176
moment, matrix, 243
in Lanczos procedure, 193
in least squares approach, 244
MSR storage format, 42
multiple eigenvalue, 15
Multiplication of matrices, 3

N

NASTRAN, 304

Neuman series expansion, 66
Newton’s law of motion, 306
nilpotent matrix, 21-22
nonnegative matrices, 5, 33
normal matrices, 5, 26

norms of matrices, 9
null space, 11, 60-61, 292

o
Oblique projection method, 138
oblique projection method, 186
oblique projector, 63, 139
optimal ellipse, 228
optimal polynomial, 246
orthogonal complement, 14, 60-61
Orthogonal matrix, 6
orthogonal projection methods, 127
orthogonal projector, 14, 60, 129
orthogonality, 12

between vectors, 12

of a vector to a subspace, 14
orthogonalization, 12
orthonormal, 12
oscillatory solutions, 311
outer product matrices, 6

P
partial reorthogonalization, 195
partial Schur decomposition, 24, 123
permutation matrices, 7
Perron-Frobenius theorem, 319, 321
Petrov-Galerkin condition, 138
Petrov-Galerkin method, 126
polynomial acceleration, 220
polynomial iteration, 220
polynomial preconditioning, 267
positive definite matrix, 32
positive real matrices, 47
positive semi-definite, 32
power method, 110, 152, 162, 178
example, 112
convergence, 112
power systems, 312
preconditioning, 163, 257, 272
principal vector, 17
projection method, 126, 170
for matrix pairs, 294
Hermitian case, 131



346

INDEX

oblique, 126

orthogonal, 126
projection operators, 129
projector, 11, 60

Q
QR decomposition, 13

quadratic eigenvalue problem, 282,
299

quantum chemistry, 312

quasi-Schur form, 24, 124

R

random walk example, 48

range, 11

rank, 11

Rayleigh Quotient Iteration, 116

Rayleigh quotient, 28, 30

Rayleigh-Ritz procedure, 128

real Chebyshev polynomials, 142

real Schur form, 24

reduced resolvent, 95

reducible, 33

reduction of matrices, 14

regular matrix pair, 285

residual norm, 176

resolvent, 66

resolvent equalities, 67

resolvent operator, 66

resonance phenomena, 308

right eigenvector, 286

right subspace, 126, 138

Ritz eigenvalues, 175

Ritz values, 175, 187

RQI (Rayleigh Quotient Iteration),
116

S
Schrédinger’s equation, 313
Schur form, 23-25
example, 24
non-uniqueness, 25
partial, 24
quasi, 24

real, 24
Schur vectors, 24, 128, 181, 236
in subspace iteration, 157
under Wielandt deflation, 121
Schur-Wielandt deflation, 123
complex eigenvalues, 124
second resolvent equality, 67
selective reorthogonalization, 195
self-adjoint, 296
semi-simple, 15
serious breakdown, 191-193
shift-and-invert, 116, 258, 263-267
real and complex arithmetic, 262
complex arithmetic, 260
for matrix pairs, 293
with Arnoldi’s method, 263
shifted power method, 113, 178
similarity transformation, 14
simple eigenvalue, 15
singular matrix pair, 285
singularities of the resolvent, 66
skew-Hermitian matrices, 5
skew-symmetric matrices, 5
socio-technical matrix, 318
span of g vectors, 11
sparse direct solvers, 46
sparse matrices, 37-57
basic operations, 44
direct solvers, 46
matrix-vector operation, 44
storage schemes, 40
triangular system solution, 46
sparsity, 37
SPARSKIT, 40, 53
spectral decomposition, 22
spectral projector, 22
spectral radius, 4
spectral Transformation Lanczos,
298
spectrum of a matrix, 4
stability, 314
linear, 314



INDEX

347

of a nonlinear system, 313

of dynamical systems, 313
staircase iteration, 152
stationary distribution, 320
Stieljes algorithm, 186
stochastic matrices, 320
storage formats, 40-44

coordinate, 40

CSR, 42

Ellpack-Itpack, 43
storage of sparse matrices, 40
structural engineering, 311
structured sparse matrix, 39
subspace iteration, 151-165

convergence, 156

multiple step version, 153

practical implementation, 160

simple version, 152

with linear shifts, 162

with projection, 156

locking in, 160

with preconditioning, 163
subspace of approximants, 126
subspace, 11
sum of two subspaces, 11
Sylvester’s equation, 100
symmetric matrices, 5

T

test problems, 47

three-term recurrence, 222

trace, 4

transition probability matrix, 320
transpose of a matrix, 3
transpose conjugate, 3
tridiagonal matrices, 6

U

unitary matrices, 6
unstructured sparse matrix, 39
upper triangular matrix, 6

A%
vibrations, 305

critical damping, 307
damped free vibrations, 307
forced, 308

free forced, 308

free vibrations, 306
overdamping, 307
underdamping, 307

w
Weierstrass-Kronecker canonical form,
289
Wielandt deflation, 117-122, 292
optimality in, 119
Wielandt’s theorem, 118

Y
YSMP, 47

Z
Zarantonello’s lemma, 145



