

I AM THE KEY TO THE LOCK IN YOUR HOUSE THAT KEEPS YOUR TOYS IN THE BASEMENT,
AND IF YOU GET TOO FAR INSIDE,
YOU’LL ONLY SEE MY REFLECTION.

 [THOM YORKE - CLIMBING UP THE WALLS]

1

Contents
Acknowledgement .. 3

Introduction .. 3

Praise to volume 1 .. 3

About the author[s] .. 3

Introduction to volume 2 .. 4

Chapter 0x01 - Quick Overview and Introduction .. 6

Modes of Operation .. 6

Privilege Rings ... 7

Chapter 0x02 - Segmentation ... 8

Introduction .. 8

Segmentation .. 8

Chapter 0x03 - Paging ... 19

Introduction .. 19

Probing CPU features using CPUID instruction 22

Virtual Address Translation Overview – IA-32e Paging 23

Structure of a Page Entry .. 26

Linear Address Translation for Larger Pages .. 27

Chapter 0x04 – Caching .. 29

Why? ... 29

Translation Lookaside Buffer (TLB) ... 29

Paging-Structure Cache ... 29

Cache Invalidation ... 29

Cache Control .. 30

Memory Types .. 30

Write-back ... 31

Write Combining ... 32

Strong Uncacheable .. 32

Memory Type Range Registers (MTRR) .. 32

Page Attribute Table (PAT) ... 32

Chapter 0x05 - Interrupts and Exceptions .. 36

2

Privilege Transitions .. 36

Stack Switching ... 36

What's an Interrupt? ... 37

Handling an Interrupt & IDT .. 37

Hardware Interrupts and Software Interrupts 39

Exceptions ... 39

Faults ... 39

Traps .. 40

Aborts .. 40

Chapter 0x06 - Exploring PE Files .. 42

Definition of a PE File .. 42

Exploring a PE file using CFF Explorer ... 42

DOS Header ... 43

NT Header ... 45

Section Headers .. 49

Imports .. 52

Chapter 0x07 - Introduction to WINAPI .. 54

3

Acknowledgement

 I owe everything I know about x86 architecture to Xeno Kovah. A man
who shared his class videos and slides freely available to everyone which
is a noble act. In return to his great efforts, I decided to write this tutorial on
x86 architecture and assembly and publish it for free so everyone
who is interested can learn and contribute.

Introduction

 This book/guide/tutorial/wiki is about assembly and x86
architecture. It's written by a low-level security dude for low-level security
dudes.
If you want to learn Assembly and its structure, reversing basics,
Segmentation, Paging, etc. Keep on reading. I highly recommend you check
opensecuritytraining.info website and watch Intermediate x86 videos as you
read volume 2. This book will teach you x86 architecture with the perspective
of Information Security and Trusted Computing. To follow latest updates and
added content to this book, please visit the author’s web site at this link:
http://www.kernelfarm.com/tutorials/the_holy_book_of_x86.html
or view the project on Github:
https://github.com/Captainarash/The_Holy_Book_of_X86

Praise to volume 1

 As I received great feedback from the readers, that pushed me to
start writing the volume 2. I hope you all get the most out of the hours of
research spent on each paragraph of the 2nd volume.

About the author[s]

 Arash TC is the main author and maintainer of this book. He is currently
studying IT in Finland and works as an Information Security Engineer
at his university. He will appreciate readers' comments, criticisms and
contributions. His main interest is low level security and kernel internals.

 Other contributors are very appreciated as they help me to complete
this project and present you a book which hopefully will be flawless.

 You can contact the author[s] by visiting http://www.kernelfarm.com/

http://www.kernelfarm.com/tutorials/the_holy_book_of_x86.html
https://github.com/Captainarash/The_Holy_Book_of_X86
http://www.kernelfarm.com/

4

Introduction to volume 2

 This book/guide/tutorial/wiki will explain and dig into the specifics of the
x86 architecture. In order to make sure of the integrity of the
content of this book, hours were spent on each and every paragraph.
Presenting such a content and spending this amount of time didn't
discourage the author[s]. Opposed to the common sense that provides such
detailed content in an expensive book with shiny hard covers, the author
decided to release it freely although he is almost broke. So please keep that
in mind and move towards sharing your knowledge freely because you are
entitled to nothing.

 This volume is divided into 3 sections. Section 1 explains x86 architecture
as the Intel manual suggests. Section 2 we will dig into windows
internals and review section 1's content in respect to Windows and Section 3
in respect to Linux. Focus will be on 64-bit mode. If you're interested
in 32-bit, go buy some book published 10 years ago.

 You need Intel Developer's Manual as a quick reference throughout this
book. You can download it from the link below:
 https://software.intel.com/sites/default/files/managed/39/c5/325462-
sdm-vol-1-2abcd-3abcd.pdf

https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

5

Section 1

Raw Intel 64 Architecture

6

Chapter 0x01 - Quick Overview and

Introduction

Modes of Operation

 Intel's IA-32 architecture supports 3 different modes:

 Real Mode: Real mode or real-address mode is a 16-bit mode only and you
see it shortly when your reset or turn on your PC. There are no privilege rings
and no virtual memory in real mode. It implements the programming
environment of Intel 8086 processor with extensions (such as the ability to
switch to protected mode or system management mode). DOS runs in Real-
Mode.

 Protected Mode: This mode is the native state of the processor. It offers
privilege rings, virtual memory, paging, segmentation, multi-tasking, etc.
Among these capabilities, it also supports running DOS programs which run
in Real Mode (16-bit) as a backwards compatibility and Intel named it as
Virtual-8086 mode. This name tells the story behind it and confirms that it's
not a separate mode and it's only a backwards compatibility within Protected
Mode. All modern OSes operate in Protected Mode.

 System Management Mode: This mode provides an operating system or
executive with a transparent mechanism for implementing platform-specific
functions such as power management and system security. The processor
enters SMM when the external SMM interrupt pin (SMI#) is activated or an
SMI is received from the advanced programmable interrupt controller (APIC).
This is all you need to know about SMM for now but to just hype you up,
SMM is a popular target for advanced rootkits since when it starts executing,
It allocates its own isolated locked down memory so neither ring 0 nor a
hyper-visor (ring -1 oh yeah we have negative rings too! You go deeper, you
may discover God down there) can access its memory. That's why SMM is
sometimes referred to as ring -2 because even a hyper-visor can't read its
memory. SMM can access all memory and there is hardware support to lock
down SMM so when you put some code into SMM, BIOS will lock it down and
nothing can ever access it.

 Intel's IA-32e architecture adds IA-32e mode which has 2 sub-modes as
described below:

7

 Compatibility Mode: Compatibility mode permits most legacy 16-bit and
32-bit applications to run without re-compilation under a 64-bit operating
system. On a 64-bit Operating system, this mode will replace protected mode
and they are mostly identical. Their execution environment are the same. It
also supports all of the privilege levels that are supported in 64-bit and
protected modes. Legacy applications that run in Virtual 8086 mode or use
hardware task management will not work in this mode.

 64-bit Mode: This mode enables a 64-bit operating system to run
applications written to access 64-bit linear address space. 64-bit mode
extends the number of general purpose registers and SIMD extension
registers from 8 to 16. General purpose registers are widened to 64 bits.

Figure 1- 1

Privilege Rings

As discuss earlier in Vol 1, there are privilege rings which define levels
of access for an object, process, thread, memory page (you name it) in a
system. We have 4 different rings. Ring 0 has the highest privilege, ring 3 has
the least. Although Modern Operating Systems never use ring 1 and 2 and all
the operations are divided into ring 0 (kernel mode) and ring 3 (user mode).
x86 privilege rings are enforced by hardware.

8

Chapter 0x02 - Segmentation

Introduction

As mentioned earlier in the Introduction section, this book will focus
on 64-bit version mostly. Segmentation is generally disabled in 64-bit.
Anyways, I decided to explain it fully because it is fully enabled when running
in IA-32e Compatibility Mode. You’ll see why Segmentation is generally (but
not completely) disabled in 64-bit mode after explaining segmentation fully.
Keep in mind that we're explaining segmentation based on 32-bit. There are
a few terms we need to know before explaining segmentation.

 Linear Address Space: Linear address space is the processor's
addressable memory and it's a flat 32-bit space. Until we introduce paging,
we refer to physical memory as linear address space.

 Physical Address Space : Physical address space is a rage of address that
the processor can generate. If you think about it, it basically depends on how
much RAM you got up to a limit of 2^32 which is 4 GB. So that means you can
have more than 4 GB of RAM on a 32-bit OS, right? Well, there is something
called PAE (Physical Address Extension) allows a 32-bit OS to access up to 64
GB of RAM. We'll talk about PAE more later.

 Logical Address: A logical address (also referred to as far pointer) consists
of a 16-bit segment selector and a 32-bit offset into that segment.

Segmentation

 Segmentation is basically the way that the processor divides
addressable memory into different segments which can be protected by
assigning read, write or execute flags and a way to translate a logical address
into a linear address.

 To access (or select) a segment you should access something called a
segment selector. A segment selector is a 16-bit value held in a segment
register. In Intel IA-32 architecture we have 6 segment register:

9

Figure 2- 1

Figure 2- 2

 CS or code section in the most basic form is where all the code of
some process (or thread to b specific) resides and in its most basic form, it’s
readable, executable but not writable. DS or data section has read access but
no write or execute (in its most basic form).

 An important note worth mentioning here is that CS and DS (and SS
which is basically a DS with read/write access) are the mostly used segments.
ES, FS and GS are there for you. You can use them however you want. We
will explore more about these segment registers when we do some
debugging sessions in windows in the next section of this book.

 As mentioned earlier logical address is a 16-bit segment selector plus
a 32-bit offset into that segment and that translates to a linear address. So

10

when we want to access a byte in physical memory1, we say I want to access
this segment and I want the byte at this offset into that segment.

 The 16-bit value of the segment selector is an offset into a table
called Descriptor Table. Each index in the descriptor table defines a base
address and a limit (think of it as a chunk of memory) and you take the base
address from the entry pointed at by your segment selector, and add the 32-
bit offset to that base address to get to the place you wanted. Look at figure
1-4.

Figure 2- 3

 The 16-bit value of a segment selector is divided into 3 section. A 13-
bit offset (so the actual offset is not 16-bit), one bit which determines you
want an offset from GDT or LDT (which we talk about in a minute) and a 2-bit
section which determines Requested Privilege Level (RPL). Here’s the actual
placement of the bits in a segment selector:

Figure 2- 4

 Requested Privilege Level may give you some notion of security
implementation and privilege rings but for now just keep that in your mind.
In figure 1-4, we can see bit 3 to 15 is the actual offset to the descriptor table

1 Until we explain paging, a linear address is a physical address.

11

and bit 2, is a table indicator which specifies which table we want to go into;
either GTD or LDT but what are they exactly?

GDT and LDT

 A segment descriptor table is an array of segment descriptors and it
can have up to 8192 (2^13) entries and each of these entries are 8 bytes
long. We have 2 types of segment descriptor tables, GDT and LDT.

 Each system must have one GDT (Global Descriptor Table) which is
visible to all running threads and task. Each entry of GDT is basically a 32-bit
base address which later the offset will be added to it (figure 1-4) to get to
the intended linear address.2

 Same goes for LDT but LDT is actually found via GDT (Explained later).
LDT or Local Descriptor Table is a per process descriptor table. There can be
one or more LDTs present in an OS for each process.

 Still there is one more question unanswered: Where or how does the
hardware or the OS find the GDT and LDT? Via 2 registers called GDTR (GDT
register) and LDTR (LDT register).

2 GDT can contain LDT, TSS or Call Gate. You’ll read about them in the later chapters.

12

Figure 2- 5

 GDTR is a 48-bit register that consists of a 32-bit base address and a
16-bit table limit which indicates the size of the table.3

 LDTR on the other hand in just a 16-bit segment selector which goes
through GDT, finds the entry it wants from the GDT and through that, finds
the LDT. So, as we mentioned before LDT is found via GDT and the entry in
GDT which is pointing to the LDT has a flag set which indicates “I’m an LDT”!
You’ll see shortly what are these GDT entries made of. Of course they are not
just a 32-bit base address.

 GDT is a descriptor table. These descriptor tables are just a big array
of segment descriptors. Now is the time we dig down more to find out what
the segment descriptors (the entries) are made of and what information do
they carry. Each segment descriptor tells the address of the first byte in the

3 On 64-bit, the base address is expanded to 64 which makes the GDTR’s size 80 bits.

13

segment (base address), privilege rings and access rights for that segment,
the size of the segment and some other information about the segment.

Figure 2- 6

 Above picture may sound confusing. Remember every entry in GDT is
8 bytes long. Every segment descriptor is divided into 2 parts, each 32 bits
long. The lower 32 bits define a segment limit (bit 0 to 15) and a base address
(bit 16 to 31).

 The upper 32 bits define 2 base addresses (bit 0 to 8 and bit 24 to 31)
and another limit (bit 16 to 19). To understand why is that happening, we
need to know that if we want to access memory which is divided into 4-Kbyte
chunks, we need a 20-bit value. (2^20 x 2^12 = 2^32 :D). So the OS will stick
those 2 parts (the 16-bit limit and the 4-bit limit) and comes up with a 20-bit
limit value. Now what happens to the base addresses? Exacts same thing as
the limit. A 32-bit linear address will be created by sticking the 16-bit value
found in the lower 32-bit part (bit 15 to 31) and the two 8-bit values found in
the upper 32-bit part (bit 0 to 8 and bit 24 to 31).

 The processor interprets the segment limit value in 1 of the 2 ways
below:

• If the granularity flag is clear, the segment size can range from
1 byte to 1 Mbyte, in byte increments.

• If the granularity flag is set, the segment size can range from 4
Kbytes to 4 Gigabytes, in 4-Kbyte increments.

14

 The D/B flag define how the processor should interpret the opcodes.
For example, one instruction can operate in different modes (16, 32 or 64
mode) but its opcodes all the same for all modes; So the processor checks
this flag to decide whether to treat the opcode (or the instruction) as
executing in 16, 32 or 64-bit mode.

 The DPL flag is Descriptor Privilege Level. It defines which ring level
can access this code. For now, just keep it in mind, we’ll discuss the privilege
rings and access rights in later chapters.

 The S flag or system flag defines whether the segment is a system
segment (0) or a Code or a Data segment (1).

 The P flag or present flag declares if the segment is present (1) or not
present (0). If some segment register gets loaded with an address which
points to a non-present segment, the processor will throw a segment-not-
present exception (#NP).

 The L flag in IA-32e mode declares if the code segment contains
native 64-bit code. If it’s set to 1, then that code segment must be executed
in 64-bit mode. If it’s set to 0, then that code segment must be executed in
compatibility mode. If the L bit is set, then D/B flag must be cleared because
there is no need to clarify how the opcodes must be treated meaning that
the opcodes must run in 64-bit mode. When running a native 32-bit OS, 64-
bit mode is not present and the L flag is reserved and always set to 0.

 If the S flag is set to 1, the type flag will define the type of the
segment meaning, access rights, read/write/execute, etc.

15

Figure 2- 7

 An important thing to notice in the picture above is “expand-down”.
A segment is in-bound from base address to base-address plus limit value,
but not always. When a segment is an expand-down segment, its boundary is
from base address to base address minus limit.

 There is also “conforming” segments which is about privilege rings. I
try to describe it shortly but there is more to it. We explain privilege rings
fully in later chapters. You can only access a non-conforming code segment
with the same privilege. However, if a code segment is conforming, it shares
its procedure (or code) with the calling program (or thread) so there is no
change in privilege ring. A transfer of execution into a more-privileged
conforming segment allows execution to continue at the current privilege
level. A transfer into a nonconforming segment at a different privilege level
results in a general-protection exception (#GP). An example of accessing a
conforming code segment are math libraries and exception handlers.

 Keep that in mind that execution cannot be transferred by a call or a
jump to a less-privileged code segment, regardless of whether the target
segment is a conforming or nonconforming code segment. Attempting such
an execution transfer will result in a general-protection exception (#GP).

 Now let’s pause for a minute. We need to understand what happens
when we want to execute a code in ring 0 when we are in ring 3. When we
want to execute some code, which resides in ring 0, you cannot directly jump

16

to a ring 0 code segment and start executing. You must hand execution to a
call gate or a task gate to do the job for you and get back to you with the
results. In between there will be various security checking and transition
which we will explain along the book.

Current Privilege Level

 The CPL is the privilege level of the currently executing program or
task. It is stored in the first 2 bits of the CS and SS segment registers. It
defines whether a thread or task is currently at ring 0 or ring 3. You may
think: “Sounds interesting! I can easily load a value in CS register which gives
me ring 0 access and I become root!”, but I have to stop you right there. Intel
has the notion of privileged instructions. You must be at ring 0 (CPL=0) to
execute a privileged instruction which mostly have something to do with
segment and control registers.4 Plus, MOV instruction cannot be used to load
values into CS register.

 There’s always a privilege ring checking happening, when you select a
segment, when you execute an instruction, when you talk to kernel, etc. That
privilege checking in its most basic form is:

 If CPL <= DPL, then access is granted.

Call Gate

 Call gates are basically a way to transfer execution from on segment
to another which may be at different ring levels, with different sizes (in term
of whether they’re 16-bit or 32-bit mode). A call-gate descriptor may reside
in the GDT or in an LDT, but not in the interrupt descriptor table (IDT)5. The
key point of a Call Gate is that when kernel wants to export some of its
functionality to user space in a controlled manner, it uses a Call Gate which
only allows the user space to jump (or call)6 to a specific location in the
kernel space. 7

4 Intel® 64 and IA-32 Architectures Software Developer Manuals - Vol. 3A – Chapter 5 – 5.9
privileged instructions - Page 5-23
5 Explained Later 😃 Be patient! 😉
6 CALL/JUMP FAR-POINTER is used when you want to use a call gate in x86.
7 int 0x80 on Linux and int 0x2E on Windows don’t use Call Gate. They use interrupts but it’s
good to know what a Call Gate is.

17

 As mentioned in previous paragraph, a Call Gate resides in GDT (or
LDT) so when you select an entry from GDT which is a Call Gate, that entry
looks like this:

Figure 2- 8

 A Call Gate entry in GDT, has a 16-bit segment selector and a 32-bit
offset which eventually takes you to the specific predefined location by the
kernel to execute whatever function you ask for. On top of that, there is a
DPL flag that specifies what ring can access this entry. It also has P (present)
flag and Type flag which was explained earlier. There is also a Parameter
Count flag which defines how many parameters you should pass to that
specific call gate. Later when we introduce Ring 0 Stack vs Ring 3 stack and
the concept of stack switching, this part of the puzzle will eventually gets
filled in your head.

 On IA-32e mode (64-bit), the Call Gate descriptor looks like this:

Figure 2- 9

18

Figure 1- 10

 The use of Call Gates has become very rare because of the
introduction of new sort of instructions to talk to kernel which are
SYSENTER/SYSEXIT and SYSCALL/SYSRET.

 In modern operating systems, segmentation is not used for memory
protection anymore. Instead, they use a flat memory model which puts the
whole linear address space into one segment with read/write/execute
permissions and rely completely on paging for security.

Figure 2- 10

19

Chapter 0x03 - Paging

Introduction

 In previous chapter, we learned how a logical address gets translated
to a linear address using segmentation. In modern operating systems,
segmentation is generally disabled and a flat memory model is used So all
virtual address space8 (0x0… to 0xff…) is defined inside one segment. When
paging is disabled, logical addresses map 1:1 to physical addresses. But when
paging is enabled, a linear address must be translated into a physical address.

 The name “paging” is chosen because physical memory gets divided
into fixed size chunks like the pages in a book and exactly like a page in a
book, when you want some information written specifically in a page of a
book, you go to library and find the shelf, the you look at the indexes to find
the page that you want. Figure 3-1 shows the big picture of the journey of a
logical address until it reaches physical memory9.

Figure 3- 1

8 Virtual address space is the same as linear address space. So, a virtual address is a linear
address.
9 Figure 3-1 shows paging in 32-bit non PAE mode. In 64-bit, paging is different. Anyways the
picture delivers its purpose.

20

 Alright, let’s define some terms and conventions before diving into
how paging is done on 64-bit protected mode. First of all, since segmentation
uses the flat model on 64-bit, so we may use the terms logical address, linear
address and virtual address interchangeably. A linear address in 64-bit only
has 48 effective bits. What that means is that bit 0 to 47 define the address.
So, what happens to bit 48 to 63?

 Canonical Address: When bits 48 to 63 of virtual address are all
ones or all zeros, that address is a canonical address. All virtual addresses on
64-bit must be canonical. We can also define a canonical address this way:
Bits 48 to 63 must be equal to bit 47. That means we can only have 2 range
of address in 64-bit virtual address space:

First valid address for the first range:
000

Last valid address for the first range:
0000000000000000111

 From 0 to 0x7FFFFFFFFFFF

First valid address for the second range:
11111111111111111000

Last valid address for the second range:
11

 From 0xFFFF800000000000 to 0xFFFFFFFFFFFFFFFF

 Yeah, I know you all may have the question why not just use all 64
bits? A 64-bit address can address 2^64 bytes which is a very very huge
number. So far nobody needs that much of address space and it also brings a
lot of complexity if a processor wants to manage the whole 64-bit address
space which had no use in the first place. Even now that a 48-bit address is
used, it still can access 256 Terabytes of memory. Still, there’s a lot of free
unused space in such a big address space. On 64-bit protected mode, every
virtual address must be canonical. Trying to access a non-canonical address
will throw a Page Fault exception.

 Control Registers: In x86 architecture, there are some control
registers named CR0, CR1, CR2, CR3, CR4, CR8 and EFER.10

10 CR8 register is only available on 64-bit mode. EFER was first introduced in AMD64 and
later adopted by Intel x86_64.

21

 CR0 register has various control flags that modify the basic operation
of the processor. For example, if bit 0 (AKA PE flag) is set to 1, we’re in
protected mode, if set to 0, we’re in real mode. Bit 31 of CR0 (AKA PG flag)
enables Paging if it’s set to 1. Note that PG flag, requires PE flag to be set.

 CR1 is reserved by Intel for future use.

 Whenever a page fault occurs, the linear address which caused the
page fault gets copied into CR2 register. This value is called Page Fault Linear
Address (PFLA).

 CR3 is the most important register when Paging is enabled. CR3
basically holds the physical address of a table which is used for paging.11 On
32-bit mode (or compatibility mode) CR3 point to the base of some table
called Page Directory. On 64-bit mode, it points to the base of a table called
Page Map Level 4 (PLM4). Remember that CR3 is loaded or changed per
process, meaning that each process has its own paging tables and its own
view of memory. So, CR3 always point to the Page Directory (or PML4) table
of the current process.

 CR4 contains a group of flags that enable several architectural
extensions, and indicate operating system or executive support for specific
processor capabilities. We mention some of its flags here, others will be
mentioned as they come up.

 Physical Address Extension (bit 5 of CR4): When set, enables paging
to produce physical addresses with more than 32 bits. When clear, restricts
physical addresses to 32 bits. PAE must be set before entering IA-32e mode.

 Page Global Enable (bit 7 of CR4): If PGE is flag is set to 1, it allows
frequently used or shared pages to be marked as global to all users. Why?
Because:

1. Whenever you switch between applications or processes, CR3
must be reloaded.

2. The is a caching mechanism in x86 architecture called Translation
Lookaside Buffer (TLB)12 which stores the logical-to-physical
mappings for the current process so the processor doesn’t go to
through all those tables and paging translations to locate physical
addresses for each second of execution.

11 Explained later. Don’t want to confuse you now.
12 Explained in much greater detail in later chapters.

22

3. TLB gets flushed whenever a task switch happens or whenever
CR3 gets reloaded. But if the PGE is set, the OS is allowed to set
the tables of frequently used processes as global. Global pages’
caches in TLB don’t get flushed which results in a much better
performance. Easy, ha? PGE is 99% of the times enabled by the OS
to ensure performance.

 CR8 and EFER are related to Interrupts. They are explained in later
chapters. We don’t care about them for now.

Probing CPU features using CPUID instruction

 Different CPU models have different features. In order to get that
information, for example seeing if hardware virtualization is available, we use
CPUID instruction. CPUID doesn’t accept any operands, rather it takes its
input from RAX/EAX and sometimes RCX/ECX. You can check all its
functionality in Intel’s Developer Manual13. As an example, you can use this
code to check for the vendor of the CPU:

File: Header.h

#pragma once
#define CPUID_H

#ifdef _WIN32
#include <limits.h>
#include <intrin.h>
typedef unsigned __int32 uint32_t;

#else
#include <stdint.h>
#endif

class CPUID {
 uint32_t regs[4];

public:
 explicit CPUID(unsigned i) {
#ifdef _WIN32
 __cpuid((int *)regs, (int)i);

#else
 asm volatile
 ("cpuid" : "=a" (regs[0]), "=b" (regs[1]), "=c"
(regs[2]), "=d" (regs[3])

13 Vol 2A, 3-190

23

 : "a" (i), "c" (0));
 // ECX is set to zero for CPUID function 4
#endif
 }

 const uint32_t &EAX() const { return regs[0]; }
 const uint32_t &EBX() const { return regs[1]; }
 const uint32_t &ECX() const { return regs[2]; }
 const uint32_t &EDX() const { return regs[3]; }
};

//#endif // CPUID_H

File: cupid.cpp

#include "Header.h"

#include <iostream>
#include <string>

using namespace std;

int main(int argc, char *argv[]) {
 CPUID cpuID(0); // Get CPU vendor

 string vendor;
 vendor += string((const char *)&cpuID.EBX(), 4);
 vendor += string((const char *)&cpuID.EDX(), 4);
 vendor += string((const char *)&cpuID.ECX(), 4);
 cout << "CPU Vendor: " << vendor << endl;
 system("pause");
 return 0;
}

Running above code in Visual Studio gives you the vendor of your CPU. Don’t
skip this part because it will be very useful in the future projects of this book.
For now, you just read through, later, you must do.

Virtual Address Translation Overview – IA-32e Paging

 Let’s start explaining translation of a valid virtual address in 64-bit
mode. This is going to be a high-level summary without going into deep
specifics. Translating a 48-bit virtual address to a physical address goes like as
shown in figure 3-2. First CR3 is used to find the PLM4 base address. Keep in
mind that the address in CR3 is a physical address. In fact, during address
translation, all the addresses found in CR3, tables and table entries are
physical addresses. Keep an eye on figure 3-2 as you read the rest of this
explanation.

24

Figure 3- 2

 Bits 39-47 of the virtual address is an index into PLM4. Each entry in
PLM4 is 8 bytes. So, the offset which bits 39-47 of the virtual address is
asking for is found by multiplying that index by 8.

 index = bits 39-47 of the virtual address
 PLM4E = PLM4 Entry
 Offset into PLM4 = index * 8
 PLM4E = Base Address (found in CR3) + Offset (which is index * 8)

 PLM4E points14 to the start of another table called Page Directory
Pointer Table (PDPT). So, bits 39-47 of the virtual address eventually get the
base address15 of PDPT.

 PDPT has the same structure as PLM4. Bits 30-38 of the virtual
address is used as an index into the PDPT. The offset into PDPT again is found
by multiplying this index by 8 which gives us PDPTE (PDPT Entry).

14 Reminder: a physical address
15 Physical address

25

 PDPTE stores the physical address of the next table, called Page
Directory (PD). Bits 21-29 will select an entry from Page Directory. This entry
is again found at an offset which is found by index (bits 21-29) multiplied by
8. Page Directory Entry (PDE) has the physical address to the start of last
page before reaching physical memory. This last page is called Page Table.

 Bits 12-20 is used to select an offset into Page Table (PT). The
selected entry holds a physical address which will be used as the base
address to compute the requested physical address. How? By adding the
remaining bits of the virtual address (Bits 0-11) to the physical address found
in Page Table Entry (PTE). This means that bits 0-11 act as an offset to the
final physical base address. That was a brief explanation how a valid virtual
address gets translated to a physical address.

 Each of the tables mentioned so far is 4 Kbytes in size and each entry
in them is 8 bytes. That gives us 512 entries in each table.

 So far, we saw that bits 12-47 are used to find the final physical
page16 and we saw bits 0-11 are used as an offset to that physical page. So,
we can conclude all virtual addresses with the same value for bits 12-47 will
be translated to the same physical page.

 All entries in the tables mentioned so far contain 4Kbyte-aligned
addresses. If we get the last physical address found during translation
process, which is the physical address found in PTE, which points to the
beginning of a physical page; and divide that address by 4Kbyte, what we'll
get is an integer. This integer is called Physical Page Number (PFN) and it
simply represents our physical pages by indexing them as an array. Like,
physical page 1, physical page 2, etc. Now, if we do the same for virtual
addresses, meaning that we first zero out bits 0-11 and divide the resulting
address by 4Kbyte, we will get an integer which gives us a Virtual Page
Number (VPN).

 Here's a rule that summarizes the paragraph above using PFN and
VPN terms:

All the addresses with the same VPN, will be translated into the same PFN.17

16 A physical page is a 4Kbyte chunk of physical memory.
17 This whole translation process is referred to as "Mapping".

26

Structure of a Page Entry

 Each page entry has some flags which control different aspects of the
paging translation process. A page entry for 4Kbyte-aligned paging looks like
this, no matter to which table it belongs:

Figure 3- 3

Let's explain the flags:

P: Present flag (P flag) specifies the next table in the hierarchy or the actual
physical page is present if it is set to 1. Otherwise, it's not present and all
other bits (flags) are ignored. 18

R/W: Read/Write flag indicates that writing to the requested physical page
(or next tables) is allowed when it is set to 1. If 0, then the requested physical
page (or next tables) are read-only. Although there is a control flag in CR0
register called “Write Protect”19 that allows ring 0 to write to a read-only
page but Windows sets this bit to 1 in order to enforce read-only pages to
remain intact. That way even rings 0 can’t write to a page with a cleared R/w
flag.

U/S: User/Supervisor flag tells whether the page is accessible by ring 0 or
ring 3. If it is set to 1, it is accessible to ring 3 (literally all rings). If it's set to 0,
it's only accessible to ring 0. Trying to access with CPL=3 while U/S flag is
cleared, causes a General Protection (#GP) exception.

 We'll explain the other flags in later chapters. Just for a quick note, i
flags are all ignored and they're available to software.

18 The other flags are actually available to software.
19 CR0.WP=1 in Windows by default.

27

Linear Address Translation for Larger Pages

 So far, we introduced address translation for 4Kbyte pages which is
the most common paging structure for most modern operating systems. But
we can also use 2Mbyte and 1 Gbyte pages.

Paging for 2Mbyte Pages

 While paging is set for 2Mbyte pages, there is no Page Table any
more. The process is the same as translation to a 4-Kbyte page until it
reaches the Page Directory. This means that the Page Directory Entry (PDE)
no longer points to the bottom of a Page Table. Instead in points the start of
the final physical page and uses bits 0-20 as an offset to that page. Figure 3-4
illustrates this process very clear. If you do the calculation, 2𝑀𝑏𝑦𝑒 = 221.

Figure 3- 4

28

Paging for 1Gbyte Pages

 Paging for 1 Gbyte pages eliminates Page Directory on top of Page
Table, meaning that PDPTE points to the start of a 1Gbyte chunk of physical
memory and bits 0-29 of the linear address is used as an offset to that
page20.

Figure 3- 5

20 1𝐺𝑏𝑦𝑡𝑒 = 230

29

Chapter 0x04 – Caching

Why?

 Caching is done based on the simple fact that every time a virtual
address needs to be translated to a physical address, it must go through 4
memory pages. Accessing memory pages for each paging structure besides
the execution time, is slow. To speed things up, the processor attempts to
cache these virtual-to-physical translations. We have 2 different caching
mechanisms. The first one is may ring a bell.

Translation Lookaside Buffer (TLB)

 TLB works in such a simple efficient way. Each TLB entry, translates a
logical address to its corresponding physical address along with all of it
control flags, i.e. R/W flag, U/S flag, etc. If a virtual address matches with an
entry in TLB, the translation will be completed. If the virtual address isn't
found in TLB, then processor tries to find it through another caching
mechanism called Paging-Structure Cache.

Paging-Structure Cache

 The other option is Paging-Structure Caches which stores translations
from one page entry to the next one. For example, the entries in PML4 get
cached. The advantage point in this method caching compared to not using
caches at all, is the point that the processor doesn't have to find each table
anymore. So, there will be no more base-address plus offset here. The
entries are directly cached and they are selected the same way as before,
using their corresponding bits in the virtual address. For example, to select a
PDE, bit 21-29 directly select the proper entry from Paging-Structure Caches
without the need for finding PD's base address. All the control flags are also
found and enforced using these caches just like TLB. It is obvious that TLB is
much faster than Paging-Structure Caches.

Cache Invalidation

 Imagine an entry in one of the paging tables gets updated or changed
for any reason and the caches are still the same. That would fatal errors in
the operating system's life cycle. So, the processor must make sure to
invalidate caching tables when some entry gets updated but that's a heavy

30

task and slows down the performance. So, there must be a better solution
with less overhead. As mentioned before in chapter 2, caches get flushed
when value in CR3 is changed. By loading a new value in CR3, a new address
space is loaded and it completely makes sense to invalidate the old caches.
On top of that, software must explicitly invalidate caching tables when it
updates a cache entry. This is necessary since the processor only takes care
of cache invalidation when a value is loaded into CR3 register. So, OS has the
most responsibility.

 There's one more thing to mention for the second time. What
happens to the memory regions which are used very often?21 It doesn't make
sense at all to flush caches for those memory regions such as shared libraries.
PGE flag in CR4 control register allows the OS to set the paging tables of
shared libraries as global and later OS sets G flag to 1 in the PTE of a shared
library.22 23 It's very important to know that this rule is only applied to TLB.
Paging-Structure Cache is always flushed and invalidated since G bit is
ignored in intermediate page entries.24

Cache Control

 Cache control has a very specific structure. Not every memory type is
cached, not every cache can be written back to memory if something is
changed in them and not every caching mechanism gets synchronized with
other parts of the system. There are some control registers and flags which
define the which caching mechanism must be applied to which memory
range. We explain those registers and bit after we explain memory types.

Memory Types

 Intel architecture defines 6 different memory types. We list all of
them here but only 3 of them interests us. 25

• Strong Uncacheable (UC)

• Uncacheable (UC-)

• Write Combining (WC)

21 Refer to page 20 and 21 - PGE flag in CR4.
22 For 4Kbyte pages.
23 For large pages, this is done by the last Page Entry before the final physical page is found.
For 2Mbyte pages, it is set in PDE and for 1Gbyte pages, it's set in PDPTE.
24 Remember, G bit is only effective in the last page before the final physical page.
25 For more info on all 6 memory types, check Intel Developer Manuals, 11-6, Vol. 3A

31

• Write-through (WT)

• Write-back Memory (WB)

• Write Protected

Write-back

 During read, first the processor checks it cache, if there is a match, it
reads from the cache, if not, it grabs a copy from the memory and puts it in
its cache. The next time, when it wants to access the same data, it finds it
through cache. This is called a "cache hit". Now what happens if a cache gets
updated? When executing a write on some WB memory range that is already
cached, writes will only update the cache itself. When some object tries to
access a memory range, the check the cache and updated or not-updated, it
one cache for all. But what happens in multi-core CPUs?

 Snooping

 To make sure every access made to a memory range gets the latest
updated one, a mechanism called snooping comes into play. Whenever a
processor wants to access some chunk of RAM and in that time, it notices
that another processor is writing to that location, it invalidates its current
cache and gets the updated copy from memory.

 All processors always keep track of each other memory accesses. So,
whenever processor one26 wants to access a chunk of memory which it's not
getting written to in that current time, because of the snooping mechanism,
the other processor that has modified that piece of memory before, will
notify processor one that the memory range was updated. Then, processor
one will wipes its cache for that memory range and gets the updated version
for the other processor.

 Quick Note: If you're interested to know where cached data are
stored, they are stored at L1, L2 and L3 caches. You can read more about
them in intel developer manuals, 11-2 Vol. 3A.

 Summarizing the paragraphs above, in WB memory type, all read and
write operation are done on cache line, not the physical memory. WB
memory type is the most frequently used memory type in modern operating

26 Processor one is just a naming convention to simplify the explanation.

32

systems. It is also the memory type which is used for shared libraries most of
the times.

Write Combining

 With a WC memory type, memory reads and writes are not cached.
However, when a write operation happens, the processor puts the data in its
internal buffer without caring about the order of the data and attempts to
write to memory. This mechanism is mostly useful for video buffers where
the write operation must happen out of the CPU cache and the order of the
data stream being written in real-time is not an issue. Snooping is not
present in WC memory types so there will be no guarantee for memory
coherency. For a video buffer, using this type of memory makes absolute
sense. Using it in shared libraries and code sections reduces the speed
greatly. If there is a need for memory coherency, there are ways to
deliberately flush the internal buffer of the processor.

Strong Uncacheable

 System memory locations are not cached. Reads and Writes are not
cached and every R/W operation must happen in program order. This type of
memory is used on memory-mapped I/O devices and it shouldn't be used
with normal RAM which cause the performance to fall greatly.

 Now let's explain those control registers and flags which control and
manage the caching mechanisms.

Memory Type Range Registers (MTRR)

 Memory type range registers are a set of registers that can define a
memory type for a memory range. MTRR is programmable by OS and set the
memory types for the physical memory.

Page Attribute Table (PAT)

 PAT is a Model Specific Register (MSR) which defines memory types
for virtual address ranges. PAT register is 64-bits long and has 8 sections, 8-
bits each. As you can see in figure 4-1, the lower 3 bits of each section is the
effective part and the higher 5 bits are reserved.

33

Figure 4- 1

 Depending on the value inside the PAT fields (i.e. PA0, PA1, PA2), a
virtual address range can be set to WB, WC, UC, etc. Here are the values that
can be set for the effective 3 bits in a PAT field.

Figure 4- 2

 The last paging structure before reaching the final physical page (PTE
for 4KByte pages and PDE for 2MByte pages) select a memory type from PAT.
It's important to remember that PAT is programmable by the OS. So, each OS
may set its PAT differently than another.

 In the previous chapter, we skipped some flags in page structure
entries because it wasn't so convenient to introduce them back then. Here
they are:

PCD flag: The 5th bit in PTE (or PDE) indirectly determines the memory type
of the next page.

PWT flag: The 4th bit in PTE (or PDE) indirectly determines the memory type
of the next page.

PAT flag: The 13th bit in PTE (or PDE) indirectly determines the memory type
of the next page.

34

 I know we repeated the same definition for all 3 flags above, but
here's a picture that shows you what we mean by "indirectly":

Figure 4- 3

 Depending on the settings of those 3 flags in a PTE (or PDE), the PAT
entry which defines the memory type gets selected.
There is one question left unanswered here. We said MTRR sets memory
types for physical memory. PAT does the same for virtual memory. What
happens if a virtual memory maps to a physical page with different memory
types? Intel manual define the result of combining 2 different memory types
as shown in below table:

35

Figure 4- 4

36

Chapter 0x05 - Interrupts and Exceptions

Privilege Transitions

 It's time to stop for a second and remember what we learned from
volume 1 when we explained system calls. Imagine a code is being executed
at ring 3 and wants to do something that is not allowed to be executed in
ring 3, in fact, it can only be execute at ring 0. To achieve this, code must call
the kernel and ask for a function in the kernel, hand all the necessary
information to the kernel and wait until the execution is completed in the
kernel side (if it's a legitimate request in the eyes of kernel) and receive the
result from the kernel and continue execution at ring 3.

 What happens here is called a privilege transition which changes the
CPL from 3 to 0, execute the ring 0 code and change CPL back to 3 from 0 and
get back to the ring 3 code. There are certain ways to cause a privilege
transition. We learned on of them in volume 1, using syscall and sysret
instructions for example. We are not going to discuss them here again. The
other ways to cause a privilege transitions are Interrupts and Exceptions but
before we begin explaining those, we need to have a clear understanding of
the stack and by that, I mean ring 0 stack and ring 3 stack and when a stack
switch happens.

Stack Switching

 We have 2 different stacks for ring 0 and ring 3. When a privilege
transition happens, a call to a piece of kernel code is done. As a subsequence
of a call instruction, the return address must be saved on the stack. This
address will be used when kernel wants to get back to the caller and
continue execution. If a privilege transition happens, the processor doesn't
want that return address be accessible to ring 3 code. In other words, the
processor wants to protect itself from ring 3 code so, it defines a totally
isolated stack only for ring 0. When a privilege transition happens, first, the
address of the ring 0 stack gets loaded into rsp so all the necessary
information27are saved on ring 0 stack which is untouchable by ring 3. This
happens before anything being saved on the stack or any handler comes in
play. The address of the ring 0 stack is found via Task State Segment which
provides addresses of the ring 0 SS and rsp register.

27 There is more info saved on the stack than just the return address when a privilege
transition is about to happen. We introduce them in bit.

37

 It is very important to understand that a sysret (or any return
instruction) doesn't need a corresponding syscall, meaning that the OS (and
processor) doesn't keep that track of calls and return instructions. So, a
sysret can be executed regardless of its corresponding call instruction.

What's an Interrupt?

 An interrupt regardless if it’s from hardware or software, as its name
suggests is a signal sent to processor which pauses the execution of the
currently running thread and asks the processor for immediate attention. An
example of an interrupt is a hardware interrupt when the user interacts with
a hardware (i.e. pressing a button).28

 When the processor receives an interrupt, it suspends the execution
of the current thread and deals with the interrupt. Depending what is the
source of interrupt, the processor executes its proper interrupt handler.
After serving the interrupt, it resumes the previously suspended thread.

Handling an Interrupt & IDT

 When an interrupt happens while in ring 3, first rsp gets loaded with
the address of ring 0 stack. Then a stack alignment happens which is basically
doing “and rsp 0xFFFFFFFFFFFFFFF0”. This happens for performance as
explained in volume 1. Second, these registers must be saved on the stack as
follows:

1. SS Segment register
2. rsp value while interrupt happened so stack can be reloaded

back to its original address to continue programs execution
3. rflags register which has all the information of the program

execution at the time of the interrupt
4. CS segment register which has the CPL value
5. rip to resume the code after executing the interrupt handler

 If the interrupt is happening in ring 0, then there is no privilege
change and there is no stack switch. So, SS and rsp registers don’t get pushed
onto the stack. Depending on the type of the interrupt, an error code may be
push onto the stack at last.

28 USB devices (i.e. USB mouse) are not interrupt based!

38

Figure 5- 1

 Every interrupt is associated with a number called the interrupt
vector which is an offset into a table called Interrupt Descriptor Table (IDT).
Every IDT entry is called a gate which is an address to some part of the OS (or
a device driver) code which is built specifically to handle a specific
interrupt.29 During an interrupt, this number (interrupt vector) is supplied to
the processor which causes the processor to pause the execution of the
current process and jump to whatever address is inside the requested IDT
entry and execute the interrupt handler. IDT and its entries are editable only
by ring 0. So, ring 3 cannot determine or change the entry point to OS code.

 Using iret instruction, an interrupt handler can resume the previously
interrupted code. iret instruction restores all the registers which saved on
the stack before handling the interrupt back to their original state. If the CPL
in CS register was 3, the iret changes the CPL from 0 to 3. If it was 0, then no
CPL change will occur. It is important to note that iret can go from ring 0 to

29 Now call gates make more sense?

39

ring 3 but cannot go from ring 3 to ring 0. Executing an iret instruction is
regardless of any previous interruption just as any other return instruction.

Hardware Interrupts and Software Interrupts

 Intel architecture defines software interrupts and hardware
interrupts. Hardware interrupts are the ones that are cause by interaction
with hardware. Software interrupts are the ones that are intended by the
software, meaning that the software itself caused it by using "int n"
instruction30. This does not let ring 3 code to call whatever interrupt it want
as most IDT vectors are only accessible by ring 0. Attempting to call to a ring
0 protected IDT vector cause the processor to generate a general protection
exception (#GP) which terminates the program.

Exceptions

 Exceptions are usually generated when something goes wrong (i.e.
divide by zero). Exceptions occur when the processor detects an error such
as a page fault, general protection or other types of violations. In this case,
the exception must be handled and it works mostly the same way when an
interrupt happens but an additional error code will be push onto the stack.
Exceptions may have 3 different sources:

• Processor-detected program-error exceptions

• Software-generated exceptions

• Machine-check exceptions

 and are categorized in 3 types based on the way they were reported
or whether they can be fix or cause the source to crash or terminated.

• Faults

• Traps

• Aborts

Faults

 A fault is an exception that can generally be corrected. A fault
happens when the next instruction out to be executed have is wrong in some
way (i.e. page faults when accessing an invalid page). When a fault happens,

30 Replace n with the interrupt vector you want in hex. i.e. int 0x80, int 0x5 etc.

40

EIP/RIP holds the address of the faulting instruction and after it's resolved,
the processor restores its state to the faulting instruction and resumes
execution.

Traps

 Explaining traps are a bit weird despite their simplicity in action.
Consider the current instruction as "the trapped" instruction. Trap happens
after executing the trapped instruction which causes the execution flow to
be paused. One genuine example of traps is when a program is attached to a
debugger. The debugger sets traps after each instruction to step through the
program on instruction after another.

Aborts

 When an abort exception happens, EIP/RIP may not precisely point to
the instruction which caused the exception. In that sense, there is no
guarantee for the suspended program to resume execution. Abort cause the
processor to terminate the program which generated the exception.

41

Section 2

Windows Internals

42

Chapter 0x06 - Exploring PE Files

 In this chapter, we’re going to explore PE files top to bottom in order
to have a deep understanding of how Windows executables function. This
chapter explains the concepts which is the very vital knowledge of a reverse
engineer or a malware analyst and it helps a lot in the first step of analyzing
malware, triage analysis.31

Definition of a PE File

 PE stands for Portable Executable and by that we’re not only
referring to .exe files. PE files have much more extensions and here we
mention the most common ones:

• .exe (Executable files)

• .dll (Dynamic Link Library)

• .sys/.drv (Device Derivers)

• .osc (ActiveX Control)

• .cpl (Windows Control Panels)

• .src (Screen Savers)

 A PE file has several important information about the executable. To
learn and remember later, we need some hands-on exploration of a PE file.
PE files are full of tiny detail which are very easy to forget. Opposed to
Section 1, this section we a have a lot of hands-on learning and labs.

Exploring a PE file using CFF Explorer

 You should download a copy of CFF Explorer32 and install it on your
local machine33. It’s completely free and it has a very nice graphical interface
to work with PE files. You can also use PE explorer (or whatever tool you
want). We’re going to start exploring PE headers of calc.exe file.

31 Life of Binaries (2013 Update) by OpenSecurityTranining.info lectured by Xeno Kovah is
heavily used as a resource for this chapter. Highly recommended!
32 http://www.ntcore.com/exsuite.php
33 I’m using Windows 7 64-bit

http://www.ntcore.com/exsuite.php

43

Figure 6- 1

 After opening calc.exe in CFF explorer, we see some general
information about the file created by CFF explorer itself. Looking on the left
panel, we can see all the headers of a PE file:

1. DOS Header
2. NT Headers
3. Image Section Headers

DOS Header

 The DOS header is the first structure in PE file starting from offset 0.
DOS header doesn’t really give us so many information. The only 2 thing we
care about in DOS header are e_magic and e_lfanew.34

 e_magic is basically a number which specifies the file format so the
OS can parse it correctly. e_magic is always set to the hex value 5A4D which
on ASCII is MZ which is short for Mark Zbikowski, the developer of MS DOS.
e_magic is the first item in the DOS header. All Windows applications (non-
DOS applications) have a DOS stub which says: “This program cannot run in
DOS mode.” This stub is there to inform you when you try to run a Windows
executable in DOS.35

 e_lfanew tells the offset of the next header.

34 Figure 6-2
35 Figure 6-3

44

Figure 6- 2

Figure 6- 3

45

NT Header

 The NT header contains a signature and 2 embedded structures
(headers).

Figure 6- 4

 The signature in the NT header contains the hex value 0x00004550
which is the ASCII word “PE” in little endian.

 The File Header in the NT header contains 4 pieces that we care
about: Machine, NumberOfSections, TimeDateStamp and Characteristics.

Figure 6- 5

• Machine: It basically tells us on which architecture the executable
should run. Hex value of 014C is for 32-bit applications and 8664 is for
64-bit. This doesn’t absolutely determine whether the binary is 32-bit
or 64-bit.
 Quick note: 32-bit PE files are called PE32 and 64-bit ones are
called PE32+.

• NumberOfSections: Tells how many section headers we are going to
see later in the file.

46

• TimeDateStamp: It tells us when this executable was compiled. The
time is number which indicates Unix time since epoch36. This is a very
valuable information for a malware analyst but as a quick note, this
and some other PE headers can be manipulated to hide the real
information and mislead a reverse engineer. Also, all Delphi programs
set the TimeDateStamp as June 19, 1992.

• Characteristics: There are lots of different attributes you can specify
as characteristics, i.e. Is the file executable? is it a dll? Can it be
mapped to larger pages? and so on.37

Figure 6- 6

 We can see in Figure 6-6 that calc.exe is a 32-bit PE file and should
run a 32-bit environment (compatibility mode on 64-bit Windows).

36 Seconds since January 1st 1970 00:00:00 UTC.
37 You can take a look at all the attributes here: https://msdn.microsoft.com/en-
us/library/windows/desktop/ms680313(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680313(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680313(v=vs.85).aspx

47

 The second embedded data structure inside NT header is the
Optional Header. The optional header is not optional at all and it contains 8
items that are important to us: Magic, AddressOfEntryPoint, SizeOfImage,
DllCharacteristics and DataDirectory. Depending on whether the binary is 32-
bit or 64-bit, some fields in the Optional Header may be ULONGLONG instead
of a DWORD.38

Figure 6- 7

• Magic: This one is actually the variable which determines whether the
binary is 32-bit or a 64-bit. If the magic value is 0x10B then it’s a PE32
and if it’s 0x20B, then it’s PE32+.

38 i.e. ImageBase and SizeOfStackReserve.

48

• AddressOfEntryPoint: This is a relative address (an offset) which
points to first byte where code execution must be started. This
doesn’t necessarily point to main() or the first byte in .text section.
This address tells the OS loader that after mapping the binary into
memory, jump to this location and start executing code.

• SizeOfImage: This is the total size of the binary once it’s mapped into
memory. So, the OS loader take this size, allocates it on RAM and
start mapping the piece in memory.

• DllCharacteristics: There are some security options in
DllCharacteristics which can specify whether the binary uses ASLR,
DEP, etc.

Figure 6- 8

DLL can move tells us that this DLL supports ASLR and relocations in memory.

Code Integrity Image indicates that when OS loader to check the digitally
signed hash of the binary to make sure of its integrity and then map it into
memory if passed.

49

Image is NX compatible turns on DEP on memory regions except .text to
ensure that no code can be executed in stack, heap and other sections of the
file when loaded into memory. This option is very important and can prevent
some exploitations (although it’s possible to bypass DEP).

Image does not use SEH tells the OS that in case of an exception, the binary
doesn’t use OS exception handling mechanism.

 That’s it for now about Optional Header. I know I didn’t explain
DataDirectory but we’ll get back to it after explaining some other headers
and data structures of PE files.

Section Headers

 The raw data in a PE file is grouped in different sections so they can
have their own set of permissions and characteristics according to their main
functionality (i.e. Read/Write/Execute). This information is store in Section
Headers which first defines some sections (i.e. text, rdata, etc.). You can see
some of the most common section names in figure 6-9.

Figure 6- 9

 As described in volume 1, text section is where all the code of the
executable resides. It should be set as readable and executable but not
writeable. One of the most common characteristics of a malware is that its
text section is writable which means that the malware has some self-

50

modifying code or such. rdata is a section of the binary that has all the read-
only data such as strings. data section has some data with read/write
permission. bss is mostly for uninitialized global variables. You can notice
that bss has 0 size on disk but takes some space in memory as specified in its
Virtual Size attribute which confirms this. idata is where the executable holds
the addresses needed for imported functionalities which mostly gets merged
with text or rdata section. edata is the section which holds exported
functions.39 reloc has the information for relocation in memory. When a PE
file wants to get loaded into memory, it specifies a preferred address. If that
address is already in use, then it must be relocated, then this section will be
used to manage that properly. rsrc has different resources like icons and
embedded binaries and other data.

 It is important that you see a different and more original data
structure of the Section Headers presented by MSDN which describes the
section headers in a more generic way rather than the “nice” way of CFF
explorer. You can see this data structure in figure 6-10.

Figure 6- 10

39 bss, idata and edata aren’t present in notepad.exe but you can check some other binaries
to find them.

51

 In the characteristics of every section header some of the very
important attributes of the PE sections are defined. Look at figure 6-11. To
understand these important characteristics better, this time we used Lord
PE.40

Figure 6- 11

 In the picture above, we are looking at the characteristics of the text
section of notepad.exe. As shown, the text section of notepad.exe is
Readable and Executable but not writable. It can be cached and It is NOT
shareable in memory. We will explain more of these characteristics as they
come up.

 Back to the Section Headers, there is one more thing to mention.
Virtual Size and Raw Size are quite important, specially to a malware analyst.
In some malware, we may see the raw size to be set to 0, but the virtual size
is 1000, 2000 bytes or so. It means that the malware will require that much
of space (1000, 2000, etc. for Virtual Size) when it gets loaded (mapped) into
memory. Why? Because it may unpack, decrypt or decode some code in
memory later when it is running and jump to that section to execute. The
reason for this twist is that by using this way, malware can bypass signature
based analysis of the anti-virus.

40 You can download Lord PE at http://www.softpedia.com/get/Programming/File-
Editors/LordPE.shtml

http://www.softpedia.com/get/Programming/File-Editors/LordPE.shtml
http://www.softpedia.com/get/Programming/File-Editors/LordPE.shtml

52

Imports

 Imports section of a PE file includes all imported modules and
functions of the program. We can see in figure 6-12 imported modules of
notepad.exe.

 This table tells a lot about a binary and it’s very valuable to a malware
analyst to get an idea what functionalities the malware may have. If the
malware is packed, this table doesn’t tell much.

Static Linking vs Dynamic Linking

 We have 2 ways of importing functions and libraries; Static and
Dynamic. In static way, the whole imported library will be copied into the
program source itself and after linking, there will be made a big binary with
all the imported functionalities included.

 In Dynamic Linking, a list of pointers to these functions will be saved
in the binary after linking so instead of copying the whole library, only a
pointer will be saved which results in a much smaller binary. This pointer
helps the program to find the requested function in runtime. Another
advantage of Dynamic Linking is when a library needs to be patched, only
that library gets patched and there will be no need to recompile the binaries

53

which import those libraries. Imagine if Windows wants to patch kernel32.dll
and the binaries in the OS are all statically linked. You should reinstall the
whole Windows OS again just to patch 1 DLL!

 That’s it for now regarding PE files. There will be updates for this
chapter in the future.

54

Chapter 0x07 - Introduction to WINAPI

