E742 Power Electronics Part II Applications

Dr Kin Fai (Kenneth) TONG Rm 1120, Engineering Building Ext. 33019 Email: k.tong@ee.ucl.ac.uk http://www.ee.ucl.ac.uk/~ktong

E3002 Power Electronics

Schedule & Syllabus

- 11 Feb 14 Mar 2005, 5 weeks
- Monday 15.00 16.00, GS302
- Friday 15.00 17.00, Roberts Building 508
- Lecture 1: Applications & Devices overview
- Lecture 2 5: Converters (Ideal operation)
- Lecture 6: Converters (Overlap)
- Lecture 7: Converters (Inverting mode)
- Lecture 8: Converters (Design aspects)

- Lecture 9: Commutation circuits
- Lecture 10: DC Choppers
- Lecture 11: Inverters
- Lecture 12: Driver Circuits
- Lecture 13: DC Motor Control and Traction
- Lecture 14: Switched mode power supplies

1

Recommended Texts

- Power Electronics D.A. Bradley CRC Press 2nd Ed 1995
- Power Electronics, Circuits, Devices, and Applications Muhammad H. Rashid, Pearson Prentice Hall, 3rd Ed. 2004

E3002 Power Electronics

- Rapid development of power semiconductor devices, such as
 - Thyristor
 - High power bipolar transistors,
 - High power Metal Oxide Semiconductor (MOS)

,led to significant improvement in,

- Speed
- Power capability
- Efficiency
- Hence increase the range of applications
 - AC motor control
 - Servo and control
 - High power DC transmission
 - Sophisticated power supplies (switching-mode, uninterruptible)

3

Devices for Power Electronics

- Thyristor
- Gate turn-off (GTO) thyristor
- Power bipolar transistor
- Power Metal Oxide Semiconductor Field Effect Transistor (MOSFET)
- Insulated Gate Bipolar Transistor (IGBT)

E3002 Power Electronics

Performance Comparisons					
Performance parameter	Thyristor	GTO thyristor	BJT	Power MOSFET	IGBT
Switching speed	**	****	****	****	****
Switching loss	**	**	***	****	****
On-state loss	**	**	****	**	***
Ease of turn-on	****	***	***	****	****
Ease of turn-off	*	**	**	****	****
Current rating	****	****	***	**	**
Voltage rating	****	***	****	***	***
Surge current	****	****	***	***	***

Table 1 Comparisons power electronics devices performance

***** Best * Worst

Note: Difference in power handling capacity

- mega Watts for thyristors
- kilo Watts for MOSFETs

E3002 Power Electronics

5

Control of Power Electronics Devices

Control in power electronics

- Variation of the device switching sequences
- Microprocessor and microelectronics technologies
 - Expansion of the control function
 - Enhanced performance of the controlled element
 - e.g.
 - Shaping of motor characteristics
 - AC and DC servomotor control
 - Pulse width modulated inverter drives
 - Optimisation of system operation at all times and under all conditions
 - Improved efficiencies

E3002 Power Electronics

Fig 2 Typical control system employing power semiconducto

7

Distributed and Embedded Control Processing

Co-ordination of operation of a number of discrete systems.

e.g.

- Control of speed of a series of drives, such as paper mill or steel strip mill
- The acceleration and deceleration profiles of a number of drives can be co-ordinated across the entire process

Future Development

- Advanced control strategies
- Fuzzy logic
- Neural networks at both the device and system level
- Self-learning and self-turning (adaptivity)
- Systems can be based on
 - Microprocessors or microcontrollers
 - Applications specific integrated circuits (ASICs) to maximise individual performance capabilities

E3002 Power Electronics