
emu8086

Where to start?

1. Click code examples and select Hello, world. A code example
with many comments should open. All comments are green and
they take up about 90% of all text, so don't be scared by this
tiny "Hello Word" code. The compiled executable is only about
100 bytes long, because it uses no interrupts and has only one
loop for color highlighting the text. All other code is straight-
forward and writes directly to video memory.

2. To run this example in the emulator, click emulate (or press
F5). The program then attmepts to assemble and save the
executable to c:\emu8086\MyBuild. If the assembler
succeeds in creating the file, the emulator will also automatically
load it into memory.

3. You can then click single step (or press F8) to step through the
code one instruction at a time, observing changes in registers
and the emulator screen. You can also click step back (or press
F6) to see what happens when reversing those changes.

4. There are many ways to print "Hello,World" in assembly
language, and this certainly isn't the shortest way. If you click
examples and browse c:\emu8086\examples, you'll find
HelloWorld.asm which assembles into only a 30-byte
executable. Unlike the previous example which carries out each
step by itself, this one is much smaller because it uses a built-in
interrupt function of the operating system to write to the display.

The integrated 8086 assembler can generate console programs that
can be executed on any computer that runs x86 machine code
(Intel/AMD architecture)

The architecture of the 8086 Intel microprocessor is called "Von
Neumann architecture" after the mathematician who conceived of the
design.

NOTE: A CPU can interpret the contents of memory as either

instructions or data; there's no difference in the individual bytes of
memory, only the way in which they're arranged. Because of this, it's
even possible for programs to re-write their own instructions, then
execute the instructions they've changed.

Source Code Editor

Using the Mouse

Editor supports the following mouse actions:

Mouse Action Result

L-Button click over text Changes the caret
position

R-Button click Displays the right click
menu

L-Button down over selection, and drag Moves text

Ctrl + L-Button down over selection, and drag Copies text

L-Button click over left margin Selects line

L-Button click over left margin, and drag Selects multiple lines

Alt + L-Button down, and drag Select columns of text

L-Button double click over text Select word under cursor

Spin IntelliMouse mouse wheel Scroll the window
vertically

Single click IntelliMouse mouse wheel Select the word under
the cursor

Double click IntelliMouse mouse wheel Select the line under the
cursor

Click and drag splitter bar Split the window into
multiple views or adjust

the current splitter
position

Double click splitter bar

Split the window in half
into multiple views or
unsplit the window if
already split

Editor Hot Keys:

Command Keystroke
===
Toggle Bookmark Control + F2
Next Bookmark F2
Prev Bookmark Shift + F2

Copy Control + C, Control + Insert
Cut Control + X, Shift + Delete, Control + Alt + W
Cut Line Control + Y
Cut Sentence Control + Alt + K
Paste Control + V, Shift + Insert

Undo Control + Z, Alt + Backspace

Document End Control + End
Document End Extend Control + Shift + End
Document Start Control + Home
Document Start Extend Control + Shift + Home

Find Control + F, Alt + F3
Find Next F3
Find Next Word Control + F3
Find Prev Shift + F3
Find Prev Word Control + Shift + F3
Find and Replace Control + H, Control + Alt + F3
Go To Line Control + G
Go To Match Brace Control +]

Select All Control + A
Select Line Control + Alt + F8
Select Swap Anchor Control + Shift + X

Insert New Line Above Control + Shift + N

Indent Selection Tab
Outdent Selection Shift + Tab

Tabify Selection Control + Shift + T

Untabify Selection Control + Shift + Space

Lowercase Selection Control + L
Uppercase Selection Control + U, Control + Shift + U

Left Word Control + Left
Right Word Control + Right
Left Sentence Control + Alt + Left
Right Sentence Control + Alt + Right

Toggle Overtype Insert
Display Whitespace Control + Alt + T

Scroll Window Up Control + Down
Scroll Window Down Control + Up
Scroll Window Left Control + PageUp
Scroll Window Right Control + PageDown

Delete Word To End Control + Delete
Delete Word To Start Control + Backspace

Extend Char Left Shift + Left
Extend Char Right Shift + Right
Extend Left Word Control + Shift + Left
Extend Right Word Control + Shift + Right
Extend to Line Start Shift + Home
Extend to Line End Shift + End
Extend Line Up Shift + Up
Extend Line Down Shift + Down
Extend Page Up Shift + PgUp
Extend Page Down Shift + Next

Comment Block Ctrl + Q
Uncomment Block Ctrl + W

regular expression syntax rules for search and replace

wildcards:
 ? (for any character),
 + (for one or more ot something),
 * (for zero or more of something).

sets of characters:
 characters enclosed in square brackets
 will be treated as an option set.

 character ranges may be specified
 with a - (e.g. [a-c]).

logical OR:
 subexpressions may be ORed together
 with the | pipe symbol.

rarenthesized subexpressions:
 a regular expression may be enclosed
 within parentheses and will be treated as a unit.

escape characters:
 sequences such as:
 \t - tab
 etc.
 will be substituted for an equivalent
 single character. \\ represents the backslash.

If there are problems with the source editor you may need to manually
copy "cmax20.ocx" from program's folder into Windows\System or
Windows\System32 replacing any existing version of that file
(restart may be required before system allows to replace existing file).

compiling the assembly code

type your code inside the text area, and click compile button. you will
be asked for a place where to save the compiled file.
after successful compilation you can click emulate button to load the
compiled file in emulator.

the output file type directives:

 #make_com#
 #make_bin#
 #make_boot#
 #make_exe#
you can insert these directives in the source code to specify the
required output type for the file. only if compiler cannot determine the
output type automatically and it when it cannot find any of these
directives it may ask you for output type before creating the file.

there is virtually no difference between how .com and .bin are
assembled because these files are raw binary files, but .exe file has a

special header in the beginning of the file that is used by the operating
system to determine some properties of the executable file.

description of output file types:

• #make_com# - the oldest and the simplest format of an
executable file, such files are loaded with 100h prefix (256
bytes). Select Clean from the New menu if you plan to compile
a COM file. Compiler directive ORG 100h should be added
before the code. Execution always starts from the first byte of
the file. This file type is selected automatically if org 100h
directive is found in the code.
supported by DOS and Windows Command Prompt.

• #make_exe# - more advanced format of an executable file. not
limited by size and number of segments. stack segment should
be defined in the program. you may select exe template from
the new menu in to create a simple exe program with pre-
defined data, stack, and code segments.
the entry point (where execution starts) is defined by a
programmer. this file type is selected automatically if stack
segment is found.
supported by dos and windows command prompt.

• #make_bin# - a simple executable file. You can define the
values of all registers, segment and offset for memory area
where this file will be loaded. When loading "MY.BIN" file to
emulator it will look for a "MY.BINF" file, and load "MY.BIN" file
to location specified in "MY.BINF" file, registers are also set
using information in that file (open this file in a text editor to edit
or investigate).
in case the emulator is not able to find "MY.BINF" file, current
register values are used and "MY.BIN" file is loaded at current
CS:IP.
the execution starts from values in CS:IP.
bin file type is not unique to the emulator, however the
directives are unique and will not work if .bin file is executed
outside of the emulator because their output is stored in a
separate file independently from pure binary code.

.BINF file is created automatically if assembler finds any of the
following directives.

these directives can be inserted into any part of the source code
to preset registers or memory before starting the program's
execution:

 #make_bin#
 #LOAD_SEGMENT=1234#
 #LOAD_OFFSET=0000#
 #AL=12#
 #AH=34#
 #BH=00#
 #BL=00#
 #CH=00#
 #CL=00#
 #DH=00#
 #DL=00#
 #DS=0000#
 #ES=0000#
 #SI=0000#
 #DI=0000#
 #BP=0000#
 #CS=1234#
 #IP=0000#
 #SS=0000#
 #SP=0000#
 #MEM=0100:FFFE,00FF-0100:FF00,F4#

•
all values must be in hexadecimal.

when not specified these values are set by default:
LOAD_SEGMENT = 0100
LOAD_OFFSET = 0000
CS = ES = SS = DS = 0100
IP = 0000

if LOAD_SEGMENT and LOAD_OFFSET are not defined, then
CS and IP values are used and vice-versa.

"#mem=..." directive can be used to write values to memory
before program starts
#MEM=nnnn,[bytestring]-nnnn:nnnn,[bytestring]#
for example:

#MEM=1000,01ABCDEF0122-0200,1233#
all values are in hex, nnnn - for physical address, or
(nnnn:nnnn) for logical address.
- separates the entries. spaces are allowed inside.

note: all values are in hex. hexadecimal suffix/prefix is not
required. for each byte there must be exactly 2 characters, for
example: 0A, 12 or 00.

if none of the above directives directives are preset in source
code, binf file is not created.
when emulator loads .bin file without .binf file it will use
c:\emu8086\default.binf instead.
this also applies to any other files with extensions that are
unfamiliar to the emulator.

•
•

the format of a typical ".BINF" file:

 8000 ; load to segment.
 0000 ; load to offset.
 55 ; AL
 66 ; AH
 77 ; BL
 88 ; BH
 99 ; CL
 AA ; CH
 BB ; DL
 CC ; DH
 DDEE ; DS
 ABCD ; ES
 EF12 ; SI
 3456 ; DI
 7890 ; BP
 8000 ; CS
 0000 ; IP
 C123 ; SS
 D123 ; SP

•
we can observe that first goes a number in hexadecimal form
and then a comment.
Comments are added just to make some order, when emulator
loads a BINF file it does not care about comments it just looks
for a values on specific lines, so line order is very important.

NOTE: existing .binf file is automatically overwritten on
re-compile.

•
•

In case load to offset value is not zero (0000), ORG ????h
should be added to the source of a .BIN file where ????h is the
loading offset, this should be done to allow compiler calculate
correct addresses.

• #make_boot# - this type is a copy of the first track of a floppy
disk (boot sector). the only difference from #make_bin# is that
loading segment is predefined to 0000:7c00h (this value is
written to accompanied .binf file). in fact you can use
#make_bin# without any lack of performance, however to make
correct test in emulator you will need to add these directives:
#cs=0# and #ip=7c00# - assembler writes these values into
.binf file.
You can write a boot sector of a virtual floppy (FLOPPY_0) via
menu in emulator:
[virtual drive] -> [write 512 bytes at 7c00 to boot sector]
first you should compile a .bin file and load it in emulator (see
"micro-os_loader.asm" and "micro-os_kernel.asm" in
c:\emu8086\examples for more information).

then select [virtual drive] -> [boot from floppy] menu to
boot emulator from a virtual floppy.

then, if you are curious, you may write the same files to real
floppy and boot your computer from it. you can use
"writebin.asm" from c:\emu8086\examples\
micro-operating system does not have ms-dos/windows
compatible boot sector, so it's better to use an empty floppy
disk. refer to tutorial 11 for more information.
compiler directive org 7c00h should be added before the code,
when computer starts it loads first track of a floppy disk at the
address 0000:7c00.
the size of a boot record file should be less then 512 bytes
(limited by the size of a disk sector).
execution always starts from the first byte of the file.
this file type is unique to emu8086 emulator.

error processing

assembly language compiler (or assembler) reports about errors in a
separate information window:

MOV DS, 100 - is illegal instruction because segment registers cannot be
set directly, general purpose register should be used, for example
MOV AX, 100
MOV DS, AX

MOV AL, 300 - is illegal instruction because AL register has only 8 bits,
and thus maximum value for it is 255 (or 11111111b), and the
minimum is -128.

When saving an assembled file, compiler also saves 2 other files that
are later used by the emulator to show original source code when you
run the binary executable, and select corresponding lines. Very often
the original code differs from the disabled code because there are no
comments, no segment and no variable declarations. Compiler
directives produce no binary code, but everything is converted to pure
machine code. Sometimes a single original instruction is assembled
into several machine code instructions, this is done mainly for the
compatibility with original 8086 microprocessor (for example ROL AL,
5 is assembled into five sequential ROL AL, 1 instructions).

• *.~asm - this file contains the original source code that was
used to make an executable file.

• *.debug - this file has information that enables the emulator
select lines of original source code while running the machine
code.

• *.symbol - symbol table, it contains information that enables to
show the "variables" window. It is a plain text file, so you may
view it in any text editor (including emu8086 source editor).

• *.binf - this ASCII file contains information that is used by
emulator to load BIN file at specified location, and set register
values prior execution; (created only if an executable is a BIN
file).

Using the emulator

If you want to load your code into the emulator, just click "Emulate"
button .
But you can also use emulator to load executables even if you don't
have the original source code. Select Show emulator from the
Emulator menu.

Try loading files from "MyBuild" folder. If there are no files in
"MyBuild" folder return to source editor, select Examples from File
menu, load any sample, compile it and then load into the emulator:

[Single Step] button executes instructions one by one stopping after
each instruction.

[Run] button executes instructions one by one with delay set by step
delay between instructions.

Double click on register text-boxes opens "Extended Viewer" window
with value of that register converted to all possible forms. You can
modify the value of the register directly in this window.

Double click on memory list item opens "Extended Viewer" with
WORD value loaded from memory list at selected location. Less
significant byte is at lower address: LOW BYTE is loaded from selected
position and HIGH BYTE from next memory address. You can modify
the value of the memory word directly in the "Extended Viewer"

window,

You can modify the values of registers on runtime by typing over the
existing values.

[Flags] button allows you to view and modify flags on runtime.

Virtual drives

Emulator supports up to 4 virtual floppy drives. By default there is a
FLOPPY_0 file that is an image of a real floppy disk (the size of that
file is exactly 1,474,560 bytes).

To add more floppy drives select [Create new floppy drive] from
[Virtual drive] menu. Each time you add a floppy drive emulator
creates a FLOPPY_1, FLOPPY_2, and FLOPPY_3 files.
Created floppy disks are images of empty IBM/MS-DOS formatted disk
images. Only 4 floppy drives are supported (0..3)!
To delete a floppy drive you should close the emulator, delete the
required file manually and restart the emulator.

You can determine the number of attached floppy drives using INT
11h this function returns AX register with BIOS equipment list. Bits 7
and 6 define the number of floppy disk drives (minus 1):
Bits 7-6 of AX:
 00 single floppy disk.
 01 two floppy disks.
 10 three floppy disks.
 11 four floppy disks.

Emulator starts counting attached floppy drives from starting from the
first, in case file FLOPPY_1 does not exist it stops the check and
ignores FLOPPY_2 and FLOPPY_3 files.

To write and read from floppy drive you can use INT 13h function,
see list of supported interrupts for more information.

emulator can emulate tiny operating system, check out operating
system tutorial.

Global Memory Table

8086 CPU can access up to 1 MB of random access memory (RAM).
This is more than enough for any kind of computations (if used
wisely).

memory table of the emulator (and typical ibm pc memory table):

physical address of
memory area in HEX short description

00000 - 00400 Interrupt vectors. The emulator loads this file:
c:\emu8086\INT_VECT at the physical address 000000.

00400 - 00500

System information area. We use a trick to set some
parameters by loading a tiny last part (21 bytes) of
INT_VECT in that area (the size of that file is 1,045 or 415h
bytes, so when loaded it takes memory from 00000 to
00415h).
this memory block is updated by the emulator when
configuration changes, see system information area table.

00500 - A0000 A free memory area. A block of 654,080 bytes. Here you can
load your programs.

A0000 - B1000 Video memory for vga, monochrome, and other adapters.
It is used by video mode 13h of INT 10h.

B1000 - B8000 Reserved.
Not used by the emulator.

B8000 - C0000

32 kb video memory for color graphics adapter (cga). The
emulator uses this memory area to keep 8 pages of video
memory. The emulator screen can be resized, so less memory
is required for each page, although the emulator always uses
1000h (4096 bytes) for each page (see INT 10h / AH=05h in
the list of supported interrupts).

C0000 - F4000 Reserved.

F4000 - 10FFEF

ROM BIOS and extensions. the emulator loads BIOS_ROM
file at the physical address 0F4000h. addresses of interrupt
table points to this memory area to make emulation of the
interrupt functions.

interrupt vector table (memory from 00000h to 00400h)

INT number address in address of
in hex interrupt vector BIOS sub-program

00 00x4 = 00 F400:0170 - CPU-generated,
 divide error.

04 04x4 = 10 F400:0180 - CPU-generated,
 INTO detected
 overflow.

10 10x4 = 40 F400:0190 - video functions.

11 11x4 = 44 F400:01D0 - get BIOS
 equipment list.

12 12x4 = 48 F400:01A0 - get memory size.

13 13x4 = 4C F400:01B0 - disk functions.

15 15x4 = 54 F400:01E0 - BIOS functions.

16 16x4 = 58 F400:01C0 - keyboard functions.

17 17x4 = 5C F400:0400 - printer.

19 19x4 = 64 FFFF:0000 - reboot.

1A 1Ax4 = 68 F400:0160 - time functions.

1E 1Ex4 = 78 F400:AFC7 - vector of diskette
 controller parameters.

20 20x4 = 80 F400:0150 - DOS function:
 terminate program.

21 21x4 = 84 F400:0200 - DOS functions.

33 33x4 = CC F400:0300 - mouse functions.

all the others ??x4 = ?? F400:0100 - default interrupt stub.

A call to BIOS sub-system is disassembled as BIOS DI (Basic Input/Output System - Do
Interrupt). To encode this 4 byte instruction, FFFF opcode prefix is used. for example:

FFFFCD10 is used to make the emulator to execute interrupt number 10h.

At address F400:0100 there is this machine code FFFFCDFF (it is decoded as INT
0FFh, it is used to generate a default error message, unless you make your own interrupt
replacement for missing functions).

System information area (memory from 00400h to 00500h)

address
(hex) size description

0040h:0010 WORD

BIOS equipment list.

bit fields for BIOS-detected installed hardware:
bit(s) Description
 15-14 number of parallel devices.
 13 reserved.
 12 game port installed.
 11-9 number of serial devices.
 8 reserved.
 7-6 number of floppy disk drives (minus 1):
 00 single floppy disk;
 01 two floppy disks;
 10 three floppy disks;
 11 four floppy disks.
 5-4 initial video mode:
 00 EGA,VGA,PGA, or other with on-board video BIOS;
 01 40x25 CGA color.
 10 80x25 CGA color (emulator default).
 11 80x25 mono text.
 3 reserved.
 2 PS/2 mouse is installed.
 1 math coprocessor installed.
 0 set when booted from floppy.

0040h:0013 WORD

kilobytes of contiguous memory starting at absolute
address 00000h.
this word is also returned in AX by INT 12h.
this value is set to: 0280h (640KB).

0040h:004A WORD number of columns on screen.
default value: 0032h (50 columns).

0040h:004E WORD
current video page start address in video memory (after
0B800:0000).
default value: 0000h.

0040h:0050 8
WORDs

contains row and column position for the cursors on each
of eight video pages.
default value: 0000h (for all 8 WORDs).

0040h:0062 BYTE current video page number.
default value: 00h (first page).

0040h:0084 BYTE rows on screen minus one.
default value: 13h (19+1=20 columns).

see also: custom memory map

Custom Memory Map

You can define your own memory map (different from IBM-PC). It is
required to create this file: c:\emu8086\custom_memory_map.inf
then you can use the following format to add settings into that
configuration file:

address - filename
...

for example:

0000:0000 - System.bin
F000:0000 - Rom.bin
12AC - Data.dat

Address can be both physical (without ":") or logical, value must be in
hexadecimal form. Emulator will look for the file name after the "-"
and load it into the memory at the specified address.

Emulator will not update System information area (memory from
00400h to 00500h) if your configuration file has "NO_SYS_INFO"
directive (on a separate line). for example:

NO_SYS_INFO
0000:0000 - System.bin
F000:0000 - Rom.bin
12AC - Data.dat

emulator will allow you to load ".bin" files to any memory address (be
careful not to load them over your custom system/data area).

Warning! standard interrupts will not work when you change the
memory map, unless you provide your own replacement for them. To
disable changes just delete or rename "custom_memory_map.inf"
file, and restart emu8086.

See also: Global Memory Table

MASM / TASM compatibility

syntax of emu8086 is fully compatible with all major assemblers
including MASM and TASM; though some directives are unique to this
assembler. If required to compile using any other assembler you may
need to comment out these directives, and any other directives that
start with a '#' sign:
#make_bin#
#make_boot#
#cs=...#
 etc...

emu8086 ignores the ASSUME directive. manual attachment of CS:,
DS:, ES: or SS: segment prefixes is preferred, and required by
emu8086 when data is in segment other then DS. for example:
mov ah, [bx] ; read byte from DS:BX
mov ah, es:[bx] ; read byte from ES:BX

emu8086 does not require to define segment when you compile
segmentless COM file, however MASM and TASM may require this, for
example:

name test

CSEG SEGMENT ; code segment starts here.

ORG 100h

start: MOV AL, 5 ; some sample code...
 MOV BL, 2
 XOR AL, BL
 XOR BL, AL
 XOR AL, BL

 RET

CSEG ENDS ; code segment ends here.

END start ; stop compiler, and set entry point.

entry point for COM file should always be at 0100h, however in MASM
and TASM you may need to manually set an entry point using END
directive even if there is no way to set it to some other location.
emu8086 works just fine, with or without it; however error message is
generated if entry point is set but it is not 100h (the starting offset for
com executable). the entry point of com files is always the first byte.

if you compile this code with Microsoft Assembler or with Borland
Turbo Assembler, you should get test.com file (11 bytes), right click it
and select send to and emu8086. You can see that the disassembled
code doesn't contain any directives and it is identical to code that
emu8086 produces even without all those tricky directives.

emu8086 has almost 100% compatibility with other similar 16 bit
assemblers. the code that is assembled by emu8086 can easily be
assembled with other assemblers such as TASM or MASM, however not
every code that assembles by TASM or MASM can be assembled by
emu8086.

a template used by emu8086 to create EXE files is fully compatible
with MASM and TASM.

the majority of EXE files produced by MASM are identical to those
produced by emu8086. However, it may not be exactly the same as
TASM's executables because TASM does not calculate the checksum,
and has slightly different EXE file structure, but in general it produces
quite the same machine code.

note: there are several ways to encode the same machine instructions
for the 8086 CPU, so generated machine code may vary when
compiled on different compilers.

emu8086 integrated assembler supports shorter versions of byte ptr
and word ptr, these are: b. and w.

for MASM and TASM you have to replace w. and w. with byte ptr and
word ptr accordingly.

for example:
lea bx, var1
mov word ptr [bx], 1234h ; works everywhere.
mov w.[bx], 1234h ; same instruction / shorter emu8086 syntax.

hlt

var1 db 0
var2 db 0

LABEL directive may not be supported by all assemblers, for example:
 TEST1 LABEL BYTE
 ; ...
 LEA DX,TEST1
the above code should be replaced with this alternative construction:
 TEST1:
 ; ...
 MOV DX, TEST1
the offset of TEST1 is loaded into DX register. this solutions works for
the majority of leading assemblers.

