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ABSTRACT

Formant frequencies have rarely been usedaesustic
featuresfor speech recognition, ispite of theirphonetic
significance. For some speech sounds one or more of the
formantsmay be sadbadly definedthat it is not useful to
attempt drequency measurement. Also, it is often difficult
to decide which formantabels to attach to particular
spectral peaks.
formant analysis which includes techniques awercome
both of theabove difficulties. Usinghe same data and
HMM model structure,results arecompared between a
recognizer using conventional cepstrum featused one
using threeformant frequencies, combinedith fewer

these situations can cauak higher-frequency formants to
be wronglylabelled, with disastrousffects onthe recog-
nition. In such cases alternative labellings must be
produced, andny uncertainties thatannot be resolved in
other ways must be resolved within the regotjon
algorithm. The decisions are thdslayeduntil the words
have beenrecognized [1]. Howevermany labelling
uncertainties of single frames can be safely resaivecbly

This paper describes a new method of by applying formant continuity constraints [2], whiahe a

general property of speech.First applying continuity
constraints is actuallybetter for the standard HMM
formalism, which does not exploit continuity of features.

This paper presents a new method of formant analysis which

cepstrum features to represent general spectral trends. Forhas provision for dealingith ambiguous labelling and with

the same total number of features, resudtow that
including formant features canffer increasecccuracy over
using cepstrum features only.

1. INTRODUCTION

It has beerknown for many yearthat formant frequencies
are important in determining thhonetic content of speech

indistinct formants. The method has been used to
supplement low-order cepstrum featurdsr speech
recognition.

2. NEW METHOD FOR FORMANT ANALYSIS
2.1 Human interpretation of formants

When supplied with a wide-band spectrogram of a speech
signal, an expert in experimental phonetics can usually

sounds. Several authors have therefore investigated formant estimate fairly well where the formant trajectories are for all
frequencies as speech recognition features, using various parts of the signal for which such an interpretation would be

methods for basic analysis, such as linear prediftipii2],
analysis by synthesis with Fourier spectra [3], and peak
picking on cepstrally smoothed spectra [4]. However, using
formants for recognition can sometimes cause problems, and
they have not yebeen widely adopted. It is obvious, for
example, thatformant frequencies cannot discriminate
between speech sounds for whitte main differences are
unrelated to formants. Thibkey are unable to distinguish
between speech and silence or betweewels and weak
fricatives. Wheneveany formantsarepoorly defined in the
signal (e.g. in fricatives), measurements will be unreliable,
and it is therefore essential that their estimated frequencies
should be given little weight in the recognition process.

To be useful as featurder automatic speech recognition,
formant frequencies must be supplemented by signal level
and general spectral shape information, such as provided by
low-order cepstrum featurefr example. However, when-
ever the speech spectrum has a peaky structurphtiretic
detail is better described fgrmant frequencies than by the
more usual higher-order cepstrum features, which have no
simple relationship with formant frequencies.

It is impossible to determin&om the spectrum ofome
speech sounds whether a particular peak should be
associated with one formant or wittpair, and sometimes a
formant may be soweak as a consequence of weak
excitation that it causes no peak in the spectrum. Either of

useful. For thosearts of the signal where thfermant
peaks of a particular spectral cross-sectize not well
defined, an expert canormally still make a reasonable
interpretation by using phonetic knowledge about the
normal properties of speech sounds and by interpolation
between neighbouring sounds for whidhe formant
structure is clearer. It is generally more difficult to estimate
formant frequencies automatically, givéne sameshort-
term spectral analysis that is the basisspéctrographic
display. Howeverthe task iseasy ifthe spectrakross-
section of the signal has a small nhumbeclefrly defined
peaks. Providedhat each of the thredowest-frequency
peaks is in thdrequency range typical of one tife three
lowest formantspnly one sensible formant interpretation of
the spectral shape is possible.

Fig. 1 shows a spectral cross-section wliiab clear peaks,
with the positions of theformants marked. On these
occasions a singlespectral cross section iall that is
required to make a reliable estimate. Sometirhegjever,
two formantsmay be scclose in frequencyhat they give
rise toonly asingle spectral peak. There can also often be
occasions where tal of three spectral peaks are visible,
but the frequencies and intensities might be shet the
middle peak could plausibly be F2 kgelf and the third
peak be F3, or the middle peak could be F2 and F3 together,
with the third peak being F4. In this caseen a human
expert would be incapable of making raliable choice,
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Fig. 3. Ambiguous formant labelling

given only asingle spectral cross-section. However, the
expert would beable to postulate a small number of
plausible alternatives, where in most caa#sbut one of
these alternativesould subsequently be rejected by using
continuity constraints. Thus unambiguous formant traject-
ories would be obtained for substantial proportion of any
utterance. Fig. 2 shows a spectral cross-se@tiowhich

F1 and F2 arebviously bothassociated with théowest-
frequencypeak, whereas the spectrsmown in Fig. 3 is an
example where there is uncertainty about twrect
formant labelling, and both ofthe marked formant
allocations would be plausible.

An important novelty of the formant estimation method
described in this paper is that it exploits this hurahitity

to apply formantlabels to spectral cross-sectiomgying
alternative formant allocations to peaks where appropriate.

2.2 Preliminary formant estimates

The formant analysis usdsg powerspectra derivedrom
64-point FFTs of a signal sampled at 8 kHz. To enthat
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Fig. 2. F1 and F2 in a single spectral peak
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Fig. 4. Frequency warping of pattern (trace 1) into warpe
pattern (trace 2) to align with input (trace 3)

stored with the pattern, to give preliminary formant frequen-
cy estimates. These estimates are quantized at the 125 Hz
spacing ofthe FFT, andmore finely quantized formant
frequencies are derived loyatching typical formant shapes

to the spectrum in the region of the chosen FFT points.

2.3 Selection of smooth formant tracks

Any alternative formant labellings given hie few best-
fitting patterns are used as input to an additional DP
process, which finds the best smooth trajectories through the
available formanfrequencycandidates. A secornphss of

the DPsmoothing process ihen made, in whiclthe best
formant labelling given bythe first pass is used as an
additional input to the DRost function. This second pass
will give analternativesmoothpath throughthe available
formant candidates the score for such gath is notmuch
worse than the score of the best path.

The formant analysis method usually gives a unigumant
interpretation of speech signals, and never gives more than
two different interpretations. Whenever it is apparfeoin

the cross-sections represent the formants as well as possible,a spectrogram whetbe formants shouldbe, it isextremely

the FFTs are takefnom regions immediatelgfter points of
excitation of thevocaltract, selected on the basis ofoaal
power maximum. There is a store of about 1ffical

rarefor the algorithm to fail tgyive the correct values, and
they are nearly always provided bthe first choice. For
each output formant frequency astimate ofconfidence in

spectral cross-sections, each of which is associated with one the measurement is derived based on spectral level and

or more sets of plausible labellings of the lowest three
formants, provided by a human expeBEach input spectral
cross-section igirst compared withall the stored patterns,
to select a few which hawbe most similar general spectral
shape. These few patterns are then comparedhégtmput
using a dynamic programmingDP) technique in the
frequency domain to finthe frequency scale warping of the
stored patterns whiclgives the bestmatch tothe input.
Fig. 4illustrates atypical warping operation. The Dédst

spectral curvature, so that less reliafdenmant frequencies
can be given less weight in recognition decisions.

2.4 Analysis example

Fig. 5 shows a typical spectrogram with superimposed
formant tracks. Duringhe [] and the [t] burst F1 has been
omitted because there was nonfidence inits accuracy.
The two alternative interpretations of F2 and &®& both

function includes components dependent on spectral level, reasonable, but the firgthoice obviously provides correct

spectral slope and extentfofquency warping.The pattern
with the best DPscore andany close competitors are
selectedfor further consideration. Th&equency warping
of each such pattern is applied to feemant frequencies

continuity intothe nearby phones. Neither F2 nor &&uld
be usefully estimated durirttpe [d] closure,and F2 in the
[n] wasonly given any confidence fame frame. The first
choice is clearly correct durinthe first part of the [g
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diphthong, but thesecond choicevas initially a plausible
interpretation, until the later part of tdgphthong had been
analysed to reveal the first-choice F2 moving close to F3.

3. USING CONFIDENCE ESTIMATES AND
AMBIGUITY IN RECOGNITION

Alternative formantsets arisingfrom labelling ambiguity
have so far beeraccommodated in recognitiojust by
choosingthe formant set which givesthe highest HMM
emission probability for each frame and model state.

During silence or background noisd whenever there is
no obviousspectral peak near to the estimatedmant
frequency, there will be no confidence inthe formant
frequencyestimate, which should not then be usedlhin

the recognition. Inthis case, the appropriatormant
information to use irthe recognizer should be specified by
prior information abouits likely position. Duringpeaky
vowel spectra oithe other hand, the measured frequencies
will be given high confidence, althougthere may be
occasional labelling ambiguity. There is a continuum of
possibilities between thesevo extremesthat can most
suitably be accommodated by regardihg uncertainty of
formant position aghe variance of a notional Gaussian
distribution of the true frequency about the estimated value.

The probabilistic interpretation leads naturally to the
incorporation of prior knowledge about formant positions
when theconfidence is low. This prior knowledge is used
by shifting the mean of thiermant distributionaway from

the measured value, towardsme suitable prior value for
that formant. A heuristic procedure has been devised for
using the estimatecbnfidence computed frothe spectrum

to derive a formant measurement standard deviation and
bias towards a prior distribution, both expressed in Hz.
Although this process isad hog it has beerfound to give
plausible values and experimentation tsh®wn that the
precise values are not critical to recognition performance.

Assuming that variances are associated wilh formant
measurements, the HMM emission probabiligiculation
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today", with superimposed formant tracks.
is no confidence in their accuracy.

needs to be modified to allofer a continuum of possible
variance values for each formant. It can be shtvat in

the case of Gaussian modéhss modification corresponds

to a convolution ofhe formant and model distributions, so
that the variancesimply add. The use of variance thus
provides a sound theoretical framework to represent
confidence associatedith formant estimates, which is an
improvement over arearlier version[5] of the formant-
based recognizer, whereliye confidence was simply used
as a weight to multiply log probabilities.

4. EXPERIMENTS

The aim was to compare recognitisgsults usingormant
features for describing fine spectral detail with those
obtained using a more conventional mel-cepstrum
representation. In order to directly assts usefulness of
the formants, the same total number of features was used for
both representations, andxactly the same low-order
cepstrum features were usfa describing general spectral
shape. Thus thenly difference was in the use fiirmants
versus higher cepstral coefficierfts representing detailed
spectrum shape. The experiments were perforfoedhe
simple task of connected-digit recognition. Wtitke details

of the front-end processing artie modelling task have not
been optimized to maximize performancthe system
provides a good basis for comparative experiments.

4.1 Experimental set-up

The test data wertour lists of 50 digit triplesspoken by
each of 10 male speakers. The training data Wene 225
different male speakers, each reading 19 four-digit strings
takenfrom a vocabulary of 1Gtrings. The output of the
FFT was used both to estimate formant frequencies with
associated confidence measures and to contpetenel-
cepstrum. Experiments were then carried owtaimpare a
representation using the first eight cepstrum coefficients and
an overall energyfeature, with a feature set iwhich
cepstrum coefficients 6, 7 and 8 were replacethbythree
formant features. To provide laasisfor comparison, an
experiment was also carried out using a representation



Experimental condition % Correct | % Subs. % Del. % Ins. % Error
5 cepstrum features + energy 95.5 3.5 1.0 0.3 4.8
8 cepstrum features + energy 96.0 3.0 1.0 0.3 4.3

5 cepstrum features + energy + 3 formant 94.9 4.8 1.2 11.6 17.6
Include confidence measure with formants 96.9] 2.3 0.8 0.3 3.4
Also include second choice formants 97.1| 2.2 0.7 0.3 3.2

Table 1. Connected-digit recognition performafmefront-endrepresentations usingnly cepstrum features compared with a
representation with the higher-order cepstral coefficients replaced by formant features.

which simply omitted cepstrum coefficients 6, 7 and 8, so
using a total of only six features.

In all cases, three-stateontext-independenmonophone
models andour single-state non-speech models wesed,

all with single-Gaussian pdfs and diagonebvariance
matrices. The model structure was a simple left-to-right one
which included self-loogransitions. Model means were
initialized from a verysmall quantity of hand-annotated
training data (twelve digits from each of twpeakers), with

all model variances initialized tthe same arbitrary value.
All model parameters were trained witén iterations of
Baum-Welch re-estimation. Duririgaining, an appropriate
lower limit was imposed onall the model variance
parameters, to prevent them training to unrealistically low
values which could prevent generalisation to the test data.

4.2 Treatment of formant features

As a pre-processing stage for bathining and recognition,
each observed formant value was moved towards its prior by
an amount determined bthe observation’sconfidence
measure. The result of this stage was thgii-confidence
formant values were unchangduit, as theconfidence
decreased, thiermant wasmovedfurther towardsts prior.
When there was no confidence, the prior value was used.

The main benefit of theonfidence measurand multiple
formant hypotheses was expected to behm reognition
stage, as the trainingrocess is much more constrained.
Therefore, in training, thesecond choice formant values
have not yebeen used and no further use has so far been
made of theconfidencemeasure. Both wereptionally
included in the recognition phase, as described in Section 3.

4.3 Results and discussion

The resultgiven in Table 1 showhat, providedthe degree

of reliability in theformant estimation is taken int&zcount,
recognition performance idetter when usingformant
features than when using only mel-cepstrum features. When
compared withthe results using just six cepstrum features,
the benefittrom addingthe threeformant features is three
times greater than that obtained by adding the three
additional cepstrum features.

When alternative formant sets were also included, there was
a further small improvement in performanc®nly asmall
improvement was expected becatise first-choice values
given bythis algorithmare usually thecorrect ones. When
they are correct, allowingthe second choice could only
increase recognition errors. It is therefore clearly desirable
to find someway of using an estimate of the relative
probabilities of correctness of the first asetond choice in

the recognition, and this will be included in future research.

The recognitioresults demonstrate the importancauising
formant measuremendéccuracy inorder to obtaingood
recognition performance. Whehe formant features were
not given specidreatment, there were significant problems
with insertion errors. These errors were caused by
mismatches between tHermant frequencies ithe non-
speech models with those measurfed the non-speech
regions of thetest data. A simplevord-insertion penalty
did not reduce these errors, lihey disappeared when the
formant confidence measure was incorporated.

5. CONCLUSIONS

These simple experiments have already demonsttiadéd
recognition system using formant features can provide better
performancethan one using mel-cepstrum features alone,
for the same total number of features. W@v need to
confirm that similar benefits are obtained on raore
challenging task with a larger database. The next stage of
algorithm development is to incorporate baokie variance
representing confidence in formant measurement and the
multiple formant hypotheses in an extendgaum-Welch
re-estimation process. It is also possible to incorporate the
shift of uncertain formant measurements towathsir
priors within the probabilistidformalism itself, in place of

the heuristic approach used here.

Other issues to investigate include the use of time derivative
features, whichought to be more valuable famoothly-
changing formantghan for high order cepstrunfeatures,
particularly because formant transitioase known to be
important cues for place of articulation of consonants.
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