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ABSTRACT

It is obvious that rovers are important vehicles of today’s solar system
exploration. Most of the rover designs have been developed for Mars and Moon surface
in order to understand the geological history of the soil and rocks. Exploration
operations need high speed and long distance traversal in a short mission period due to
environmental effects, climate and communication restrictions. Several mechanisms
have been suggested in recent years for suspensions of rovers on rough terrain.
Although their different mechanisms have found a widespread usage in mobile robotics,
their low operation speed is still a challenging problem. In this research, a new
suspension mechanism has been designed and its kinematic analysis results were
discussed. Standard rocker-bogie suspension mechanism, which has been developed in
the late 1990°s, has excellent weight distribution for different positions on rough terrain.
New design, mostly similar to rocker-bogie suspension system, has a natural advantage
with linear bogie motion which protects the whole system from getting rollover during
high speed operations. This improvement increases the reliability of structure on field
operations and also enables the higher speed exploration with same obstacle height
capacity as rocker-bogie.

In this thesis study, new bogie mechanism consisted of double-lambda
mechanisms, which has been firstly presented by Pafnuty Lvovich Chebyshev in 1869,
is solved by analytically to define the positions and singular configurations. A new
structural synthesis formula also has been introduced for such suspension mechanisms
with lower and higher kinematic pairs. By using structural synthesis methods, a
suspension mechanism has been designed with double-lambda mechanism. Equivalent
force and moment functions were also derived with equation of motion method.

The results are confirmed with the computer analysis made by Visual Nastran
4D". For this purpose, a computer model has been constructed and assembled with the

same design parameters of NASA Mars Exploration Rovers (MER1 and MER?2).
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Hig¢ siiphesiz giiniimiiz giines sistemi kesif araglarindan en Onemlileri gezer
robotlaridir. Ay ve Mars yiizeyindeki kum ve taglarin jeolojik yapisini anlamak
amaciyla pek c¢ok robot tasarimi gelistirilmistir. Kisith gorev stiresi, ¢evresel etkiler,
iklim ve iletisim kisitlar1 nedeniyle kesiflerin yliksek hiz ve uzun mesafeler kat ederek
yapilmasina ihtiya¢ duyulmaktadir. Gegtigimiz yillar boyunca, bozuk ylizey ilizerinde
calisan gezer robotlar icin bir¢ok siispansiyon mekanizmasi onerilmistir. Mobil robotlar
tizerinde genis kullanim alani bulmalarina karsin bu mekanizmalarin diisiik hizlar1 hala
ciddi problem olusturmaktadir. Bu arastirmada yeni bir siipansiyon mekanizmasi
tasarlanmig ve kinematik analizi tartisilmistir. 1990°Ii yillarin basinda gelistirilen
“rocker-bogie”, degisik pozisyonlarda miikemmel agirlik dagitma 6zelligine sahiptir.
Genel olarak “rocker-bogie” mekanizmasina benzer olan yeni tasarim sahip oldugu
dogrusal hareketli “bogie” bileseni ile yiiksek siirat ile hareket sirasinda takla atmay1
engelleyici dogal bir istiinliige sahiptir. Bu gelistirme, yiizey operasyonlar1 sirasinda
sistemin giivenilirligini artirmakta, hem de “rocker-bogie” siispansiyonu ile ayni engel
asma kapasitesine sahip olmasinin yaninda yiiksek hizda kesfe olanak saglamaktadir.

Bu tez ¢alismasinda ilk olarak Pafnuty Lvovich Chebyshev’in 1869 yilinda
sundugu lamda mekanizmasimin ¢ift olarak birlestirilmesi ile elde edilen “bogie”
mekanizmasinin analitik olarak pozisyon ve Olii durum analizleri yapilmistir. Ayni
zamanda adi ve yliksek eleman cifleri icin yeni bir yapisal sentez formiilii
gelistirilmistir. Yapisal sentez metodlart kullanilarak ¢ift lamda mekanizmasi ile yeni
bir slispansiyon mekanizmasi gelistirilmistir. Hareket denklemi yontemi ile esdeger
kuvvet ve moment fonksiyonlar1 da elde edilmistir.

Sonuglar Visual Nastran 4D" ile yapilan bilgisayar analizleri ile dogrulanmustir.
Bu amagla NASA Mars Kesif Robotlar1t (MER1 ve MER2) ‘na ait tasarim

parametrelerine uygun olarak bilgisayar modelleri olusturulmustur.
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Chapter 1

INTRODUCTION

On July 4, 1997, an orange coloured big ball softly bounced on the surface of
Mars with an unusual robotic vehicle inside. This was the first planetary mission which
has been wide public interest after first man on the moon. Small rover “Sojourner”
conducted scientific experiments for 83 Sols (Mars Days) and took hundreds of
photographs [1]. Roving on another planet came from dream to real by the help of
science and patient ambitious research. This successful mission encouraged the

scientists and NASA to continue the Mars exploration with new rovers.

Figure 1-1: Sojourner examining the rock named “Yogi” (Courtesy of NASA/JPL-Caltech)

Many rovers developed after Sojourner with different features and scientific
objectives. In early days of January 2004, second and third rovers landed different
locations on Mars named Spirit (MER1) and Opportunity (MER2) [2]. Scientific results
of these powerful vehicles are bigger than their physical dimensions. All of the three
rovers’ success and scientific results show that space agencies will continue robotic

geologists frequently in future.



1.1 Mobile Robots and Description of “Rover”

1.1.1 Definition of Mobile Robot

Similar to the International Standards Organization’s definition of an industrial
robot, mobile robot can be defined as;

“A mobile robot is an autonomous system capable of traversing a terrain with
natural or artificial obstacles. Its chassis is equipped with wheels/tacks or legs and
possibly a manipulator setup mounted on the chassis for handling of work pieces, tools
or special devices. Various preplanned operations are executed based on a pre-
programmed navigation strategy taking into account the current status of the
environment.” [3]

This definition any intelligent machine which moves with respect to
environment within limited human interaction (autonomously) called “Mobile robot”.

Mobile robots can be classified by significant properties as;

e Locomotion (Legged, wheeled, limbless, etc.)

e Suspension (Rocker-bogie, independent, soft, etc.)

e Steering (Skid, Ackerman, explicit)

e Control Algorithm (Fully-Autonomous, semi-autonomous)
e Body Flexibility (Unibody, multibody)

e Usage Area (Rough Terrain, even surface, etc.)

¢ Guidance and Navigation (Star field or Sun detection, GPS, sensor-based)

Mobile robots can be used in several applications. Dangerous area operations
(Nuclear plants), planetary exploration and pipe investigation, extreme temperature and
narrow field investigations (pyramid exploration robots). Moreover, floor cleaning
robots and servant robots are common examples for indoor use. It is not a dream that, in

near future robots will be a part of our daily life.



1.1.2 Locomotion

Locomotion is a process, which moves a rigid body. There is no doubt that a
mobile robot’s most important part is its locomotion system which determines the
stability and capacity while traversing on rough terrain. The difference of robotic
locomotion is distinct from traditional types in that it has to be more reliable without
human interaction. While constructing a robot, designer must have decided on the
terrain requirements like stability criteria, obstacle height, and surface friction. There is
no only one exact solution while comparing the mobility systems. [3, 4]

There are several types of locomotion mechanisms were designed depending on
nature of the terrain. Locomotion systems can be divided into groups as; wheeled,
tracked, legged (walking robots), limbless (snake and serpentine robots) and hopping
robots. Wheeled rough terrain mobile robots are called as “Rover”.

In nature, insects are the fastest creatures, comparing to body/speed with their
numerous legs. There is no suspicion that we are going to see legged robots more
frequently in future with improved leg control algorithms and new lightweight
materials. Limbless locomotion is another terrain adaptive locomotion type for reptile
creatures. Snakes can move very fast on uneven terrain, additionally, they can easily
climb on trees by their highly flexible body structure.

Although animals and insects do not use wheels, wheeled locomotion has
several advantages for human-made machines. Rovers can carry more weight with high-
speed comparing to walking robots and snake robots. Another advantage of wheeled
locomotion is navigation. Wheeled robot’s position and orientation can be calculated
more precisely than tracked vehicles. Opposite to wheeled locomotion, legged

locomotion needs complex control algorithms for positioning.



1.2 History of Rovers

1.2.1 Lunakhod

The first planetary exploration rover was “Lunakhod” which has been sent Moon
2 times with USSR — Luna missions to gather information around landing site and send

pictures of terrain.

Figure 1-2: First Planetary Exploration Rover “Lunokhod” (Courtesy of Lavochkin Assoc.)

Lunakhod has guided in real-time by a five-person team at the Deep Space
Center near Moscow, USSR. Lunakhod-2 toured the lunar Mare Imbrium (Sea of Rains)

for 11 months in one of the greatest successes travelled 37 km on Moon surface.

1.2.2 Sojourner

In 1996, NASA — Jet Propulsion Laboratory and California Institute of
Technology have designed new rovers with identical structure named Sojourner and
Marie-Curie. These small rovers were only 10.5 kilograms and microwave oven sized.
Rover Sojourner launched with Pathfinder landing module in December 1996. Marie
Curie rover was also planning to send Mars with 2001 mission which has been

cancelled [11, 15].



Figure 1-3: NASA - JPL Sojourner Rover (Courtesy of NASA/JPL-Caltech)

Operators have sent commands via lander Pathfinder and they examined rocks
and soil components of Mars more than 3 months. Sojourner was a breaking point of
exploration rovers with its unique six-wheeled suspension system which can overcome
one and a half wheel diameter height obstacles that is similar to an automobile passing

over a table sized obstacle.

1.2.3 Inflatable Rover

Another alternative to move on a harsh environment is to have big wheels. If a
rover has large wheels compared to obstacles, it can easily operate over most of the
Martian rocky surface. Researches show that inflatable rover with 1.5 meter wheel
diameter can traverse 99% of the area [16]. Inflatable rover has 3 wheels which are

driven by motors.
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Figure 1-4: Inflatable Rover (Courtesy of NASA/JPL-Caltech)

Robot could be able to travel approximately 30 km per hour on Mars surface by

its 100-watt power.

1.2.4 Rocky 7

Figure 1-5: Rocky 7 Rover (Courtesy of NASA/JPL-Caltech)

Rocky 7’s design and dimensions are similar to Sojourner. A robotic arm is
attached to the body for investigation. Mobility system changed to 2-wheel steering
similar to Ackerman type [27]. Although this modification decreases the complexity for

control systems, manueverability is restricted.



1.2.5 Sample Return Rover

Rough terrain mobility of a mobile robot can be increased by center of gravity
shifting methods. A good example to this category is NASA Sample Return Rover

(SRR) which has been designed to collect soil and stone sample from Mars surface.

SRR has active suspension system with variable angle between linkages [28].

Figure 1-6: Sample Return Rover - (SRR) (Courtesy of NASA/JPL-Caltech)

On inclined surface, active suspension can hold the main body horizontal.

Navigation gets easier by this feature of rover.
1.2.6 Nanorover
Another example to active suspension system is nanorover which was designed

for exploration of small celestial bodies like comets and asteroids. Small dimensions

and lightweight are advantages of this robot.




Mobility system consists of four wheels with 6 cm diameter. Each wheel
connected to the chassis with independent positioned struts. Since the robot can operate
on both sides (upside-down), overturning is not a problem. Onboard computer can

manipulate the suspension to arrange traction forces [29].

1.2.7 Micro5

Japanese Lunar rover Micro5 is a five-wheeled rover. Suspension system named
Pegasus; uses a fifth wheel to support the remaining wheels while front wheels climbing
obstacles. The rover with 100 mm wheel diameter is able to climb 150 mm height steps

and rocks [34].

e & A S =

Figure 1-8: Micro5 rover with suspension named Pegasus

(Courtesy of Meiji University — Japan)

Pegasus mobility system has 4 active wheels and one extra wheel which is
connected to the body with an actuated joint. When front wheels climb, the fifth wheel

carries some part of the weight to help wheels.

1.2.8 Shrimp

Shrimp is another six-wheeled rover which designed by Swiss Federal Institute
of Technology — EPFL. It has a one front four-bar to climb over obstacles up to two-

wheel diameter without any stability problem. Middle four wheels have parallelogram



bogie which balances the wheel reaction forces during climbing. Single rear wheel
connected directly to the main body also driven by motor to increase the climbing

capacity. [14]

Figure 1-9: Shrimp rover designed by EPFL — Switzerland (Courtesy of EPFL)

1.2.9 Mars Exploration Rovers (MER)

Mars Exploration Rovers are developed designs of Sojourner. Each Mars
Exploration Rover is 1.6 meter long and weighs 174 kilograms. Opposite to previous
rover Sojourner, which was commanded via lander Pathfinder, these robots carry all
required electronic devices on their body. Mobility system is similar to Sojourner rover

with Rocker-Bogie suspension and 4-wheel steering. [2]

Figure 1-10: Illustration of Mars Exploration Rover (Courtesy of NASA/JPL-Caltech)



1.3 Rover Operations and Future Requirements

Today’s rovers are driven by commands which are sent from ground operators
after tested in 3D computer simulator. Some of the critical motions such as climbing
high slope, driving near crater rim between rocks which have variety of height, rover
motions must be taken under consideration of flight engineers. These operations are
need to be decided by a large operator group, which increases the total cost of the

planetary exploration project.

Figure 1-11: Rocky terrain on the rim of crater Bonneville (Courtesy of NASA/JPL-Caltech)

As the future space exploration trend includes less cost principle, new rover
designs are needed to be more flexible during field operations. Although obstacle
detection and avoidance algorithms decrease the average speed, restriction of the overall
speed is suspension design of the vehicle. For example, the Mars Exploration Rovers
have a top speed on flat hard ground of 5 centimetres per second. To increase the safety
of the drive, the rover has hazard avoidance software which causes to stop and re-
evaluate its position every few seconds. Because of the safety procedures in the field
operations, the average speed can go up to 1 centimeter per second [10]. It is non-
evitable fact that future rovers will reach high speed compared to current speed with

software improvements and with the suspension design.

10



Chapter 2

WHEELED LOCOMOTION AND SUSPENSION

Like all other design matters in engineering, robots are designed according to its
working environment and purpose. Generally, wheeled robots have advantages on
rough, sandy surface with carrying large bodies. Moreover, wheeled robots can rotate

even on a spot without any skidding.

2.1 Suspension

Wheeled locomotion’s main component is its suspension mechanism which
connects the wheels to the main body or platform. This connection can be in several
ways like springs, elastic rods or rigid mechanisms. Most of the heavy vehicles like
trucks and train wagons use leaf springs. For comfortable driving, cars use a complex
spring, damping and mechanism combination. Generally, exploration robots are driven
on the rough surface which consists of different sized stones and soft sand. For this
reason, car suspensions are not applicable for rovers. The requirements of a rover

suspension are;

e As simple and lightweight as possible
e Connections should be without spring to maintain equal traction force on
wheels

e Distribute load equally to each wheel for most of the orientation

possibilities to prevent from slipping

11
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Figure 2-1: Independent car suspension system with damper and spring

Soft suspension systems with spring reduce vibrations and effects of impacts
between wheel and ground. However, reaction force of pressed spring increases the
force that transmits from wheel to ground. When climbing over an obstacle, higher

wheel’s traction force is more than the lover one which causes slippage.

2.2 Obstacle Capacity

A rover’s obstacle limit generally compared with robot’s wheel size. In four
wheel drive off-road vehicles, limit is nearly half of their wheel diameter [4]. It is
possible to pass over more than this height by pushing driving wheel to obstacle which
can be called as climbing. Step or stair climbing is the maximum limit of obstacles. The
contact point of wheel and obstacle is at the same height with wheel center for this
condition.

Field tests show that Mars mobile robots should be able to overcome at least 1.5
times height of its wheel diameter. This limitation narrows the mobile robot selection
alternatives and forces scientists to improve their current designs and study on new

Trovers.

12
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Figure 2-2: Definition of capacity

Former rover designs have different capacities. The rocker-bogie suspension
which has been used on NASA Sojourner, Spirit and Opportunity rover can pass over
1.5 wheel diameter obstacles. The “Shrimp III” rover has extensive ability with a
climbing wheel connected by rhombic four-bar has 2 wheel diameter height step
obstacle capacity [14]. Although powerful climbing characteristics, rover’s stability
loses its advantage while driving down slope.

All these researches show that most of the rover designs have a climbing
capacity between 1.5 diameters and 2 diameters of wheel. To reach higher capacities,

active climbing methods are required.

2.3 Wheel Forces

Direction of Motion

i —

—
P, < DP \
vyWy / sh Wuv J /

—

4—
R

R
R, () F VR

Figure 2-3: Free body diagrams of towed (a) and driven (b) wheels [26]
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A rigid wheel sinks on the soft terrain as in figure 2-3. sh distance is called
sinkage height. Geometry of wheel, material and ground stiffness affect sinkage height.
Depending on the geophysical properties of soil, different reaction and resistance forces
act on wheel.

The towed wheel carries some part of body weight (Wy,). The force P which tries
to move the wheel, acts from vehicle axis to center point of the wheel. These two forces
are balanced by vertical ground reaction force (Ry) and resistance force of soil R. In
towed wheel, resistance force has to be as small as possible. Motion resistance force is
resultant of soil compaction resistance, bulldozing resistance, rolling resistance,
gravitational resistance and obstacle resistance.

On the driven wheel, additional traction force F acts to the contact point with the

same direction of motion. Traction force tries to pull the chassis of robot.

2.4 Rocker-Bogie Suspension

Rocker-Bogie suspension has been developed for first Mars rover Sojourner by

NASA — JPL [19].

Figure 2-4: Articulated Suspension System (US 4,840,394)

This suspension has 6 wheels with symmetric structure for both sides. Each side
has 3 wheels which are connected to each other with two links. Main linkage called
rocker has two joints. While first joint connected to front wheel, other joint assembled
to another linkage called bogie, which is similar to train wagon suspension member. In

later design of articulated suspension system, called rocker-bogie with small changes.
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Figure 2-5: Kinematic diagram of Rocker-Bogie suspension

The main advantage of the rocker bogie suspension is load on each wheel is
nearly identical. On different positions, wheels’ normal force equally distributes
contrary to 4 wheel drive soft suspensions [4].

The connection between symmetrical lateral mechanisms is provided by a
differential mechanism which is located inside the body. Rotation of axles which are
connected two rockers are averaged, thus, vehicle body pitch angle always adapted even

if one side steps over obstacle.

2.5 Wheel Motion

While driving on a flat surface, if there is no slipping, wheel center will move on
a line parallel to the surface with constant velocity. Although, obstacle geometries can
be different, most difficult geometry which be can climbed by wheel is stair type

rectangular obstacle.
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Figure 2-6: Wheel passing over same wheel diameter (a) and more than half wheel diameter (b)

height obstacle

In figure 2-6(a), height of the obstacle is same or less than the half diameter of
the wheel. For this condition, the wheel’s instant center of rotation (IC,) is located at the
contact point of the obstacle and wheel. Trajectory of the wheel centers’ during motion
generates a soft curve, thus, horizontal motion of the wheel center does not break.

Since in figure 2-6 (b), height of the obstacle is more than the half diameter of
wheel, this condition can be classified as climbing. Climbing motion consist of two sub
motions. First one is a vertical motion, which causes a horizontal reaction force on
wheel center . This vertical motion’s instant center (IC,) is at infinity. Second one is a

soft rotation similar to figure 2-6 (a) with instant center of rotation (ICs) at the corner.

2.6 Advantage of Linear Motion

Although, load distribution advantage of rocker-bogie, a critical problem can
occur when climbing over an obstacle. Wheel forces on opposite direction of motion

produce a moment about pivot joint to rotate bogie.

16



Pivot joint

Figure 2-7: Bogie overturn problem

As we discuss in wheel forces, there are several forces act on wheel on x axis. If
the surface friction of an obstacle is not enough to climb, obstacle force (F,s) can reach
high values. This problem can also occur while middle wheel actuator failure. Driving
velocity is also restricted by bogie overturn problem. Bogie pitch angle can be adjusted

by active control methods [35].

An easy solution method for this problem can be a linear motion suspension

usage where obstacle reaction force cannot create any moment.
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Chapter 3

STRAIGHT LINE MECHANISMS

In machine science, it is important to generate special curves, exact circular
motion and straight line. Dimensional synthesis theories are used to generate a special
curve with coupler. There are different analytical and graphical synthesis methods for

motion generation, function generation and path generation.

or o

)
O)o o
J
o)
@lf*_olm
J

Figure 3-1: Watt’s linkage application on rear-suspension

Linear motion mechanisms have wide usage area in suspension mechanism
design. Most of the suspension members are needed to move on a straight line for
lateral motion of an axle [5]. In theoretically, a four-bar mechanism generates a coupler
curve in 6™ order equation. Some portion of this curve can be close to a theoretical line
with small deviation which can be neglected [6]. Usually, these mechanisms generate
linear motion from a rotational motion of a crank. For this kind of design, force
transmits from crank to coupler. In suspension designs, force is applied from ground to
coupler. This force generates a moment on crank that balanced with a spring’s reaction

force.

3.1 Chebyshev Mechanism

Chebyshev mechanism consists of double symmetric rockers connected with a

coupler with a coupler point E is midpoint of coupler link. Trajectory of point E is

18



approximately linear. Limited useful range is the most important disadvantage of this
mechanism.
Favorable parameters are;

c=1,a=05,b=d=1.25

‘-\ /
<
“a ~.

E

v

e

Figure 3-2: Cross-link straight line mechanism by Chebyshev

The straight line is parallel to the fixed base. The distance between these lines is

h=1

3.2 Watt’s Linkage

Watt’s linkage is also another four-bar mechanism which generates an
approximate straight line on a plane. It is also called ““Lemniscoid” because of the trace
of the coupler point similar to “8” curve.

Recommended dimensions are [7, 13];

a=c=30andb=50
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Figure 3-3: Watt’s Approximate Straight-Line Mechanism

3.3 Robert’s Linkage

Robert’s linkage is another four-bar approximate straight line generator

mechanism with coupler point C. Good results can be obtained with construction

parametersd=1,b=0.538 ,a=c=0.530e=1f=1.04

/

a s
b

e

C

Figure 3-4: Robert’s Mechanism

Robert’s mechanism generates a curve which has a linear part parallel to the

base link. Links and coupler curve are symmetric.
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3.4 Chebyshev’s Lambda Mechanism (Hoeken Mechanism)

Although, most of the books named Hoeken mechanism [7, 49, 50]; the first
definitions of lambda (A) mechanism are proposed by famous mathematician
Chebyshev, Pafnuty Lvovich in 1869 [8, 9, 12].

Lambda mechanism is another four-bar straight line generator. Crank link can
rotate 360 degrees while the coupler point moves on coupler curve. Curve has two

characteristic motions. First part is straight line and second part is a quick return curve.

Figure 3-5: Lambda Mechanism

Chebyshev’s mechanism is defined by three independent parameters;

a,bandd

To move the coupler point M, along a line sufficiently and necessary to fulfil the

relation:

3d—-a=2b
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In this relation, symmetrical coupler curve of point M has six points of
intersections with the ideal line. The extreme deviation is reached seven times with
subsequently changing signs.

The length of fixed d can be changed according to relation;

1.55a<d <3a

If d =3a and b =4a, triangle BDC equilateral triangle in the middle position
of the mechanism.

If d =2.22, ratio of maximum error from straight line to the length of straight
line will not be more than 0.001 that is if L = 100 mm, the error will not be more than 1

mm. [8, 12]
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Chapter 4

STRUCTURAL SYNTHESIS AND DESIGN OF
SUSPENSION MECHANISM

Design of a robotic system starts with structural synthesis where researcher can
find the answer of mobility and capability of intended mechanism. Structural and

mobility analysis formulas are important and popular subjects of kinematics.

4.1 Structural Synthesis

4.1.1 Mobility Analysis

Mobility or degree of freedom (DOF) of a mechanism is the number of
independent parameters or inputs needed to specify the configuration of a mechanism
completely. There are many mobility formulas have been developed to explain degree
of freedom of a mechanism in terms of number of links, number of joints and joint types
[17].

Most famous one of these formula is Griibler (1885) [20, 21] criteria;

wz/l(n—j—1)+Zfi 4.1)

where;
W: degrees of freedom of mechanism

A: degrees of freedom of the space in which mechanism intended to function
n: number of links in a mechanism (including the fixed link)

J: number of joints

fi: degrees of relative motion permitted by joint 1

Another interesting formula has been presented for structural formula DOF with

variable general constraint by F. Freudenstein and R. Alizade in 1975 [22];
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i L
W =Zfi—Zzk (4.2)

A = 6 for space
A =3 for plane and spherical workspace

A =2 for plane with one constraint (Cartesian motion without rotation)

In 1988, R. Alizade has introduced a new structural formula with constant
general constraint for the platform type mechanisms and manipulators for mobility of

all kinematic pairs [23];

J
W=) f.-A(N-C-B) (4.3)
i=1
where;
W: Degrees of freedom of mechanism
N: Total number of joints on the platforms
B: Number of platforms

C: Total number of intermediate branches between platforms

If there is no platform on the mechanism (B = 0), we can re-write equation (4.3);

J

W= f-AN-C) (4.4)

i
i=1

parameters become;
N: Number of joints on base link

C: Constraints between base links

4.1.2 Structural Synthesis Formula for Lower and Higher Kinematic Pairs

Let we introduce a new formula for structural synthesis of mechanism with

lower and higher kinematic pair by using equation (4.2);
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W=>f+2> f,-A4(N-C-B) 4.5)

where;
N: Number of joints on the base link or platform
fh: Number of higher kinematic pairs

fL: Number of lower kinematic pairs

If we construct new bogie by adding two lambda mechanism symmetrically,

kinematic diagram will be as figure 4-1.

Figure 4-1: Kinematic diagram and closed loops of bogie mechanism

When we apply this formula on our new bogie;
A=3,£=9,f,=2,L=4

We can write the following equation from (4.5) for planar mechanisms as;

W=> f+2> fh—i/iK (4.6)

where
L: Number of loops

For spatial mechanisms (A = 6) equation (4.6) becomes;

W=> f+5) fh—iﬂK (4.7)

If we calculate degree of freedom of bogie;
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W=9+2.2-3+3+3+3)=1

Physically this equation proves that, one actuator is enough to move bogie on the

ground.

4.1.3 Structural Groups

Structural group is a kinematic chain with zero degree of freedom (DOF) which
cannot divided into smaller structural groups with zero DOF (W=0).

LetK=1,W=0,A=23 we have,

fi+2f,-3=0 or f+2f =3

Iffi=0,fi=3 Structural group RRR

Iffhi=1,fi=1 Structural group .- Wheel (Rp)

Figure 4-2: Structural groups with different kinematic pairs

Mechanism can be described by an input and a structural group.

STRUCTURAL
INPUT MECHANISM
GROUP

Figure 4-3: Structural synthesis with one input and one structural group
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High kinematic structural group can be connected with input by elements of

higher kinematic pairs. Structural groups cannot be divided into other structural groups
with W =0

LetK=2,W=0,A=3

fi+2f,=3+3=6
fi+2f, =6

(a)

(b)

Figure 4-4: Structural synthesis of structural groups with zero degree of freedom

4.1.4 Closed Chain Construction with Structural Groups

If structural groups added each other as a chain, this mechanism always has zero

mobility. We can calculate mobility of structural group which consist of f, =1, fi=1 by
using (4.6);

W=> f+2> fh—ZL:/IK =1+2-3=0
k=1
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Figure 4-5: Closed kinematic chains with 4 (a) and 5 (b) structural groups

In figure 4-5 we constructed closed chains of structural groups. By applying
(4.6) to both of the chains;
For figure 4-5(a);

Number of lower pairs f=4
Number of higher pairs f =4
Number of independent loops L =4

Parameter of workspace 4 =3

W=> f+2> f, 2/1 =4+2-4-4.3=0

For figure 4-5(b);

Number of lower pairs f=5
Number of higher pairs f, =35

Number of independent loops L =5

Parameter of workspace A =3

W=>f+2> fh—ZL:/IK =5+2:5-5:3=0
k=1
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4.1.5 Structural Synthesis of Bogie Mechanism

Let we construct lambda mechanism by adding kinematic elements;

A\

Actuator W=1 Structural Group W=0 Four Bar W=1

Figure 4-6: Structural synthesis of a four-bar mechanism

Adding a higher pair to a four-bar mechanism gives a lambda mechanism. For

our design, higher pair is a wheel with a point contact with ground.

\'T'_‘.l
+ III = o C\\l
N\ \
Four-Bar W=1 Higher Pair W=0 Lambda W=1

Figure 4-7: Structural synthesis of Lambda mechanism

This synthesis shows that Chebyshev’s lambda mechanism has 1 DOF on plane.

Let, we add another structural group which has zero DOF to lambda mechanism.
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o — + = ' O
Structural
Lambda W=1 Double-Lambda W =1
Group W=0

Figure 4-8: Structural synthesis of double-lambda

If we add another higher pair to double-lambda mechanism, we get bogie

mechanism shown in figure 4-9.

=

N . ‘ G

Double-Lambda W=1 Higher Pair Bogie W=1
W=0

Figure 4-9: Structural synthesis of bogie

4.2 Design

4.2.1 Design Parameters Selection

Design parameters can be selected from Chebyshev’s definitions which have
been described in previous chapter. Our purpose is to maximize the linear part of the

curve. This result can be achieved by selecting the parameters as;
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1.55a=d

If we put d = 1.55a into equation that yields;

3d-a=2b
3-1.55a—-a=2b
b=1.825a

Comparing to overall size of rover we can assume b = 200 mm to design a
mechanism.

That gives us;

a =109 mm
b =200 mm
d =169 mm

Coupler

Base / (2b)
(d)
e
Rocke/
(b)

Figure 4-10: Definition of linkages and crank angle

4.2.2 Geometric Trajectory of Lambda Mechanism

By using these parameters, the instant positions and trajectory of lambda

mechanism can be drawn as below
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Coupler point

trajectory

Figure 4-11: Trajectory of one wheel at different positions

Mechanism works linear in approximately 260 degrees angular displacement of
crank. During this motion link B displacement is 80 degrees. This linear part with 490
mm vertical distance is the workspace of the double lambda mechanism. Return motion

of the coupler curve will be out of our study.

4.2.3 Singularity

If a mechanism gets into position where displacement of output link is undefined
or impossible with driving force of input link, this condition called dead position or
singularity [18]. Four-bar mechanism gets singularity if transmission angle B reaches 0
or 180 degrees where input link (coupler) cannot transmit force to output link (rocker).
This problem can be solved with help of other link or inertia effects. If another force
applied from rocker to coupler, mechanism can continue its motion. For our bogie
design we have to avoid from singular positions near workspace in order to transmit
force from one lambda mechanism to other. If one side gets singular angle, whole
mechanism will lock.

Lambda mechanism has two singular configurations like other four-bar

mechanisms.
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4.2.3.1 First Singularity

First singularity of lambda mechanism is reached when transmission angle (the
angle between crank and coupler) f = 0 degrees. Although this angular position within
the linear part of the coupler curve, this configuration is the upper limit of our suitable

workspace.

f/://

Figure 4-12: First singularity of lambda mechanism where = 0°

4.2.3.2 Second Singularity

Second singular position of lambda mechanism is reached when transmission
angle B = 0. This configuration is on the end of linear part of the curve for this reason

the lower limit of crank is that configuration.

Figure 4-13: Second singularity of lambda mechanism where = 180°
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4.2.4 Double-Lambda Mechanism Connection

New bogie design consists of two lambda mechanisms which are connected
symmetrically. Thus, wheels move on a straight line but in opposite direction of each
other. This design balances the reaction forces on each wheel; therefore the traction
force remains same for each wheel whether one wheel is on upper position.

Symmetric connection of two mechanisms is a critical process. Since the both
sides of the bogie will work in linear part of the curve, one side will be opposite
position of other side. While designing this connection we must avoid from singular

configurations of the mechanism.

(a) (b)
Figure 4-14: (a) Connection between two lambda mechanisms, (b) definition of ground
clearance

Symmetric lambda mechanisms are connected to each other with a V-shaped
rigid link. Angle t can be selected by geometrically. The constraint of this angle is
ground clearance of bogie (h.) and maximum obstacle capacity. For our parameters,

optimum connection angle T = 160°.
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4.2.5 Adaptation of Double-Lambda Mechanism into Rocker-Bogie

Suspension: LBS

Rocker-bogie mechanism has advantages while distributing load on the wheels
nearly equal. To obtain this useful property, double lambda mechanism can be

combined with former rocker-bogie design.

Lambda - Bogie

Figure 4-15: Experimental suspension design LBS

Linear Bogie Suspension (LBS) has nearly similar off-road capacity with linear
bogie motion. Small angular displacement of rocker which affects linear motion of
bogie can be neglected.

Two planar mechanisms are connected to each other by a differential
mechanism. When one side climbing over obstacle, this mechanism rotates the main

body around the rocker joints by average angle of two sides

Figure 4-16: Differential gear mechanism between right and left rockers
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Gear A connected to left, gear B connected to right and C is assembled on the
main platform. In differential mechanisms, all gear ratios are same. That means if gear
A rotates 10 degrees and gear B rotates 20 degrees, main platform will rotate 15

degrees.

4.2.6 Mobility Analysis of LBS Mechanism

Three-dimensional kinematic diagram of whole LBS mechanism is shown in
figure 4-17. We can assume a cardan joint connected between two rockers instead of

differential mechanism for easier calculation.

Cardan joint

(2R)

Figure 4-17: LBS kinematic diagram

Structural formula with variable general constraint for the mechanical system (4.2) is;

For our mechanism;
P; — Kinematic pairs with one degree of freedom : 22
P, — Kinematic pairs with two degrees of freedom (higher kinematic pairs): 12 and 1

universal joint (with 2R)
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On the left and right side of the mechanism, we have 8 loops with A = 3 and 1

spatial mechanism (Cardan joint) A = 6. Therefore;

S =Y 343 6=8341-6=30
k

k=1 =1 k=1

j L
A =(22+12+2)-30=6
i=l k=1

W=> fi-

Mobility analysis shows that rover suspension mechanism has total 6 degrees of

freedom.

4.2.7 Various Design Possibilities with Linear Motion Bogie

Adapting to terrain parameters, there are different possibilities for rover
suspension like LBS. Spring and damper application to double lambda suspension good

solution for high-speed off-road vehicles.

re [

Figure 4-18: Different applications of lambda bogie suspension
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Chapter 5
POSITION ANALYSIS OF LAMBDA MECHANISM

5.1. Coupler Curve Function and Trajectory of the Wheel

5.1.1 Vector Loop Equations

It is essential to determine the position and the behaviour of the tip point
function P analytically. For this purpose, we can write vector loop equations to acquire

mathematical definition of coupler point.

The resulting vector components contain two parameters which are dependent to
each other named a and 0. We will assume that 0 is the input angle. Thus, the other

angle a can be calculated by using geometric and trigonometric relations.

Figure 5-1: Description of position vector P

This closed curve function can be calculated by using 2 vector equations. First

equation starts from the origin O, ends at B.

OB=u, +0, (5.1)
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Figure 5-2: Vector loops on lambda mechanism

Second vector is located between point B and C.

BC =0, — (0, +0) (5.2)
where;
v, = +h(Cosai + Singj) (5.3)
v, =+dj (5.4)
v, =+a(Cosél +Sind) (5.5)

From equation and figure 5-2, vector P can be calculated as;
P=uv +(v - (v, +0vy)) (5.6)
If we put equation (5.3), (5.4) and (5.5) into equation (5.2);

P = 2b(Cosai + Singj) —dj —a(Cosé + Siné)

P = (2bCosa —aCosd)i + (2bSine —d —aSing)j (5.7)
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Cartesian components of this vector function can be divided into parts;

FX =2bCosa —aCosé (5.8)
P, =2bSina —d —aSing (5.9)

5.1.2 Angular Relations

It can be seen from (5.8) and (5.9), we need two parameters to determine coupler
curve. Since the mechanism is 1 DOF, we can find an equation between a and 6 from

geometric relations.

B
P /'/’\\
@ —L/ \
M\ \
77, /s \\
¥ \\\\\
7 M/ \\c
=\
o/ lp i L — \\\(
f,f — — \\\
O 'I'C%\d_--wf"’f a Y
=\ N\
7777, \

\‘\\ D
Figure 5-3: Angles between linkages
Let we write cartesian components of point B;
Xz = SCos¢g = aCosé (5.10)
Yy =sSind = aSind + d (5.11)
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OB distance;

S =X~ +VYg (5.12)

Angular position of AB link becomes;

g=atan2(Xz,Yp) (5.13)
2 2 Q2 2 Q2
u=+Cos™ [%}:ﬂos‘[zbﬂ)zs } (5.14)

by the same manner with equation 5.14;

2,2 2 2,2 R 2
¥ =+Cos™ {%} =+Cos™ [%} =+Cos™ [ZST} (5.15)
S S S

a=¢-¥ (5.16)

We can calculate all angles relative to input angle 0 by using these relations.

5.1.3 Coupler Curve Function

We can draw P vector’s different positions relative to an input angle by using
equation (5.8) and (5.9). Coupler curve function has two parameters o and 0, which are

dependent to each other.
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Figure 5-4: Graph of function P (a) and geometrical trajectory (b)

Figure 5.4a is graphical representation of (5.8) and (5.9). As we can see in figure

5.4b, it fits exactly with geometrical trajectory. 5 Small deviations from ideal line can

also be seen which has discussed by Chebyshev. Maximum error is approximately 1%

of total y-axis motion, which can be neglected. The linear part of this curve is parallel to

the base frame.

5.2 Singularity Analysis

5.2.1 Singular Configurations Relative to o

For singularity analysis we have to obtain input angle relative to transmission

angle. In lambda mechanism, transmission angle is shown in figure 5-5;
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Figure 5-5: Transmission angle

If B goes to zero, mechanism will reach first singularity. Let we derive a function

between transmission angle  and OC link;

We can write a vector loop equation of point B;

OA+AB=0C +CB (5.17)

X components :
aCosd =bCosa +bCos(8 + ) (5.18)

y components:
d +aSind = bSina +bSin(@ + ) (5.19)

Since our aim is to calculate angle o relative to angle B, 0 has to be excluded
from this equation. For this purpose, all terms which include 0 are left on right handside

of (5.18) and (5.19).

—bCosa = —aCosé +bCos(€ + ) (5.20)
—bSina + d =—aSiné +bSin(6 + ) (5.21)
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If we take square of both equations and add them;

b® +d* —2bdSina = a* +b* —2abCos(d + ) — 2abSing - Sin(& + B)
b® +d* —2bdSina = a*> +b*> —2abCosf
that gives;

d*—a’+2abCosp
2bd

As we know from trigonometric relations;

Cosf =+4/1-Sin’s (5.23)

to reach a solution 3 must be double root as 0 and & radians.

Sina = (5.22)

Physically meaning of this condition is that, singularity occurs if transmission

angle 0 or 180 degrees. In this configuration crank cannot transmit force.

Calculation of 5.22 with our construction parameters;

a =109 mm
b =200 mm
d =169 mm

yields;
First singularity (f = 0°) occurs at o. = 63.089674 °
Second singularity (p = 180°) occurs at a =336.532747°

Both results exactly fit with geometric results.

5.2.2 Singular Configurations Relative to 0

We can also calculate singular configurations relative to 0 angle. By using same

vector loop of (5.17);

OA+AB=0C+CB
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X components :

aCosd =bCosa +bCos(0+ f)

y components:

d +aSin@ =bSina +bSin(@ + )

to exclude a term we can re-arrange these equations;

aCosd —bCos(f + ) =bCosa (5.24)

asSingd -bSin(@+ B)+d =bSina (5.25)

Adding the squares of both sides;

a’Cos’@ +b’Cos’ (6 + ) —2abCosdCos(8 + B) +a’Sin*6 +b*Sin* (8 + )+ d*
—2abSindSin(@ + £) —2bdSin(@ + £) + 2adSing = b*

a’>+b’ +d* —2abCos#Cos(8 + ) — 2abSindSin(0 + )
~2bdSin(d+ ) +2adSing = b? (5.26)

and arranging Sine and Cosine terms;

a’ +d* —2abCos@(CosdCos S — SindSin B) — 2abSind(Sin@Cos S + SinBCosH)
—2bd(SinéCosf + SinCos#) + 2adSind = 0 (5.27)

If we apply angle-sum formula;

a’+d’* —2abCos*dCos 3 + 2abCosdSindSin S — 2abSin*Cos 3 — 2abSindSin SCosé
—2bdSindCos S — 2bdSinCosé + 2adSind = 0 (5.28)

a’ +d’* —2abCosf —2bdSindCos 3 — 2bdSin SCosé + 2adSing = 0 (5.29)

This equation can be shortened as;

A(S)-Cosd+B(f)-Sind+C(B)=0 (5.30)
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where

A(S) = —2bdSin3 (5.31)
B(f) = 2ad — 2bdCos3 (5.32)
C(p)=a’+d* —2abCosp (5.33)

Solution of constraint equation (5.30)

9=2tan‘(BiVBZ(C2A2)] (5.34)

C-A

Calculation of 5.34 with our construction parameters;

First singularity ( = 0°) occurs at 6 = 185.893084°
Second singularity (B = 180°) occurs at 6 = 306.420997°

5.3 Symmetric Side Inverse Position Analysis

By using (5.15) and (5.16), we can find angular position of mechanism relative
to 0. On the opposite side of the mechanism, input becomes o angle. For this reason, we
need to find a relation between output angle a and input angle 6 to make inverse

position analysis.

Figure 5-6: Left side of the bogie mechanism
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Due to the distance b, between E and F will remain fixed, we can write the
following equation;

(F-E)-(F-E)-b>*=0 (5.35)

The coordinates of point F and E are;

aCosé bCosa
E= . and F = . (5.36)
aSing —d +bSina

b*Cos’a +a’Cosd — 2baCosaCosé + d* + b*Sin*a + aSin’6 — 2dbSina

—2abSinaSind +2adSind-b* =0  (5.37)
(—2baCosa)Cosé + (2ad —2abSina)Sind —2dbSina +b* +a* +d* —b* =0
A(@)Cos6 + B()Sind = C(a) (5.38)
where,
A(a) = —2baCosa
B(a) =2ad —2abSina

C(a)=—-2dbSina +a* +d*

Solution of this constraint function has been discussed in Appendix B;

0(a) = arctan (%j + arccos (ﬁj (5.39)
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5.4 Singular Positions of Double-Lambda Bogie Mechanism

The double lambda connection restricts the motion of each side. That means one
of the singularities is not inside the workspace. For our mechanism, first singularity

stays out of range.

(@) (b)

Figure 5-7: Singular configurations of right (a) and left (b) side of the bogie

Angular positions of each side where singularity occurs;

Second singularity (B = 180°) of right side
Or = 306.42°, 0. =91.91°

Second singularity (B = 180°) of left side
0L =233.58°, Or = 88.09°

First singularity is not possible for bogie mechanism since this configuration is

out of range. For safety, we must avoid from second singular positions with a safety

margin angle (i.e. 10 degrees) on both sides. A stopper can be used for this purpose.
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Chapter 6

STATIC ANALYSIS

6.1 Wheel Reaction Forces

d & |
O
D
wW
Frear 1 _Fmiddle 1 .Ffront
Clrl) B {$) Al

Figure 6-1: Force diagram of LBS

If bogie is symmetrical, distances between CD and DB will be equal. For this

reason, reaction forces of rear and middle wheels are the identical.

Moment on point O;
Mo :(F + I:middle)'dz - I:front .dl (61)

rear

For equilibrium;

(Frear + Frigaie) "0, =F

rear m

d, (6.2)

front *

If —== 1 , the reaction forces will be equal. Due to fact that, for small angular

displacements horizontal displacements will be very small, reaction forces will be very

. d . o .
close to each other. For our design, — =0.75 to increase climbing capacity.
1
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6.2 Stability Definition of a Mobile Robot

During operation on rough terrain, another problem is stability of the rover. If a
robot can maintain its balance at all time in freezing position, it can be said that the
robot has static stability. Physically, the boundary for stability criteria is related with

polygon, which consists of contact points of wheels and ground [3].

Stability
// Area

Figure 6-2: Stability area consists of contact points

If center of gravity projection on the ground plane, stays inside of the stability
area robot will be stable. This shape can be narrowed depending on safety factor. The
stability of robot, which is stationary or moving with constant speed, can be defined
with gravitational stability margin [26]. This margin is the minimum distance between
projection of center of gravity on the ground plane to the edge of convex region.

The maximum slope of the terrain where robot can climb is called gradebility.

Maximum downhill and cross-hill gradeability definitions are:
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6.2.1 Down-Hill Gradeability

(Yco)o

@

Figure 6-3: Downhill rear (a) and front (b) stability margins and dimensions

Y
ad = min {arctan (MJ , arctan [Mj} (6.3)
Zee Zce

6.2.2 Cross-hill Gradeability

&

4
CG Zco

(a) ) X ™

Figure 6-4: Lateral stability margins and dimensions

O = MIN {arctan (MJ ,arctan (Mj} (6.4)

ZCG ZCG

The maximum slope and stability margins can be calculated by;

Yoo 2 Zcs taneay,,, (1+SM) (6.5)
Buw = Zes tanay,, (1+SM) (6.6)
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In equation (6.5) and (6.6), term SM is called safety margin which is a safety
factor for uncertainties of wheel and center of gravity position.

Values for LBS are;

ZCG =490 mm
LWW =1172 mm
BWW =760 mm

For SM = 1, limit angles can be calculated as;

Front downhill gradeability, Ogmax = 45.58°
Rear downhill gradeability, ogmax = 53.90°
Right — Left cross-hill gradeability, Ogmax = 37.79°
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Chapter 7

EQUATION OF MOTION

7.1 Second Order Lagrange Equation

For a mechanism with several degrees of freedom, the equation of motion

usually described by second order Lagrange equation;

d(oT oT .
LT g, i=1,2,.., 7.1
dt[ﬁqi) 5 Q. i S (7.1)

where T is kinetic energy of system, 1 is number of input coordinates, which has equal
degree of freedoms, q; input coordinates, Q; equivalent forces.

Equivalent forces Q; are defined from condition of equality elementary works of
its forces on virtual displacements coinciding with variety of input coordinates to the

works of external forces applying to the links of the mechanism on its virtual locations;

ZQi5qi = Z(ijéxj +F,0Y; +F,02,+ M .60, + M 6y, + M ,6p)) (7.2)

i=1 j=1
where

Fix, Fjy, Fj, - components of external forces F;

Mix , Mjy , Mj, - components of external moments M;

dx; , Oy; , 0z; - virtual translational displacements of the points of acting external
forces

d; , 0vj , Oy; - virtual rotational displacements of the lines at applying external

moments
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Usually the elementary work of the all external forces are defined step by step

by changing just one input coordinate on fixed the others input coordinates.

Thus,

OX; oy oz,
OX;=—+30, , 0y, =—+30, , 6z;=—150,
b, 'oag, 'og
Sp. =—168q, , 8y, =—316q, , Sy, =—L54, 7.3
@, o G » 07 3 q , oy 5 of (7.3)

using equations (7.2) and (7.3), the expression, equivalent forces and moments can be

shown as;

¥oq, Yaoq, Feq, "o Yaq " oq,

n (o, o, e, 0y, ow,
Qi:Z( e Ve By Yy 71+M.ﬂj (7.4)

The gravity and elasticity forces are into account by changing the potential
energy of the mechanical system. Then the Lagrange motion equation (7.1) can be

written in the following form;

dfar)_dfom) ot am_,
dtlag, ) dtlog ) oq og

_dar-m_ar-1I _

dt  aq, aa °
d oL oL
_Z= -0 7.5
"t og g, Q (7:5)

where L =T —I1T called Lagrange function.
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Friction forces and moments are considered in Lagrange motion equation (7.5)
for cases only when they don’t depend on reaction forces of kinematic pairs. In that
case, friction forces can be included in expression of equivalent forces (7.2). In
vibration analysis, the friction forces can be taken into account as force which is

proportional to input velocity ¢, and introduced as dissipative function of Releia;

1 S S .
q)zgzzbijqiqj (7.6)

i=l j=l

where bj; is a constant coefficient.

Using equation (7.6) and Lagrange motion equation (7.5), we can describe in the
general form second order of motion equation of a mechanical system with several
degree of freedom by taking into account kinetic and potential energies and dissipative

function as;

gk 2. % o li=1, .., 77
dtog, og; oo, Qi ) 7D

If the input coordinate q; is cycle coordinate, the Lagrange equation (7.7) can be

integrated with respect to cycle coordinate.

7.2 Motion of Rover Suspension Mechanism

The rover suspension mechanism LBS consist of two symmetrical mechanisms
on right and left sides of the rover body with six actuated wheels. Equation of motion
which describe the left side motion, will be valid for the right side mechanism. When
rover moving on even surface, all links of the mechanism will move parallel with

respect to fixed coordinates.
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Figure 7-1: Equivalent forces and virtual displacements of LBS

The structural formula to calculate the mobility for moving frame at rover

suspension mechanism for one side can be described as;
L
q=W-f-2f +> 4 (7.8)
k=1

where W=3, fj=11, f, =3, L = 5 that gives; q =1

Using formula (7.8) also for the right side, we getq =1

The first position of rover suspension mechanism as shown in figure 7.2 wheel
numbered 7 while climbing over obstacle. This motion changes the position of

mechanism by link 5. As the input angle q; and equivalent moment, M¢; will be applied

to actuator 7, which will move up by driving forces Py;.
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Mei

b o o o o o o o o o o o o o o

Figure 7-2: Reverse step climbing first configuration

The second position of rover suspension mechanism as shown in figure 7.3,
wheel 8 climbs and linkage mechanism change its position and equivalent moment Mcs.

Wheel 8 will move up with force Pgs.

Figure 7-3: Reverse step climbing second configuration

The third position is shown in figure 7.4. For this configuration, input angle qy
and equivalent moment Mgy applying to wheel 9 will move the linkage mechanism by

link 4 and active driving force Pgo.
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AT

Figure 7-4: Reverse step climbing third configuration

7.3 Equation of Motion of Linkage Mechanism with Three Degrees of

Freedom

Assuming input rotations ¢y, qs and qo of actuators on wheels numbered 7, 8and

9 respectively, we can write the following Lagrange equations;

doT oT

. - Me7
dt og, oa,
doT o

dtég, agq

where M.7, Mg and My are equivalent moments of forces

Kinetic energy of mobile vehicle T can be defined by assuming that links 1, 2, 3

and 4 are in balance and mass effects at link 5 and 6 neglecting,

1
T :E(I7a)72 + L] + Ly + @} + Lw; + L@} +1,0;) (7.9)
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where;

I, I, I5, 14, I7, Ig, Io - moment of inertia of links
1,2,3,4,7, 8 and 9 with respect to rotation axis

01, My, M3, M4, ®7, ®g and oy —angular velocities of links 1, 2, 3,4, 7, 8 and 9

The rotation angles ¢, @2, @3 and @4 at links 1, 2, 3 and 4 are functions of rotation

input angles @7, g and @9 at input links 7, 8 and 9 respectively.

O, =001, 04, 05) P, =0, (01,05, P,)

2 =¢3(¢79¢8’¢9) s @y :(/’4((07:%’@)) (7.10)

Time derivation of equation (7.10) gives angular velocities @,,®,,®, and @, ;

_8¢1 o, o, 0
o, oy o,
ajl o, o, o, a~)7
@, | o, ol 8 0, 0 @ (7.11)
@, 8(% 8(% 8(/% ol '
~ ?, (2 2 0

@,
ﬁf/y ﬁf/y 8¢y 0
L o, oy o,

op.
Partial derivativesﬂ ,j=1,2,3,4and 1 =7, 8, 9 are transmission ratios from

links 1, 2, 3 and 4 to input links 7, 8 and 9 respectively. The matrix with partial

derivatives in (7.11) is also called Jacobian matrix.

Let we describe the partial derivatives as transmission ratio coefficients:
89 79 78
Uy =09, /0p, , U =0¢,/0¢, , Uy =0p,[0p,
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u§§ :a%/a% 5 U;: =6§02/8¢)8 s 1'12798 :8(/)2/3(09
Uy, =09, /0, , Uy =0¢,/0¢; , Ui, =0¢,/0p,

Uj? 28(04/8(07 ; Ung :a¢4/8¢8 > UZ98 =8(04/8¢)9

where superscripts describe fixed input angles and subscripts show

(7.12)

variable

transmission ratio between output and input (e.g. transmission angle ratio U}, is partial

derivation function of output ¢4 with input @; when other input angles 8 and 9 are

fixed)

The equation of (7.11) can be written as:

@ | u7 Uy uy 0@
@] _|Uy Uy Uy 0| &
& | |up oup Ul o @
@] [uy g ug 0] 0

(7.13)

Thus, the task of defining transmission ratios can be solved as a task of

kinematic analysis of planar linkage mechanism with one degree of freedom. All

transmission ratios are function of input angles @7, @g and @o.

Using equations (7.9) and (7.13) we can get equation of kinetic energy of

mechanical system as;

_ 2 2 2
2T =05 + L + o5 + 21,0, + 21 g0,0, + 21 0,0,

(7.14)
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where 177, Iss , Ioo , I3, I79 and Igg are called inertial coefficients.

892 892 892 892
|77=|7+|1(U17) +|2(U27) +|3(U37) +|4(U47

792 792 792 792
|88:|8+|1(u18) +|2(u28) +|3(U38) +|4(U48

7812 7842 782 7842
|99:|9+|1(U19) +|2(U29) +|3(U39) +|4(U49

_ 89,,79 89,,79 89,,79 89,,79
|78 - |1u17u18 + |2u27u28 + |3u37u38 + I4u47u48

_ 89 78 89 78 89,78 89,,78
|79 - Ilul7ul9 + |2u27u29 + |3u37u39 + I4u47u49

_ 79,,78 79,,78 79,,78 79,,78
|89 - Ilul8u19 + |2u28u29 + |3u38u39 + |4u48u49

Derivative equation of kinetic energy (7.14) for input angles ¢7, ¢s and @q gives;

101, 1dl, 10, al, al, a|[@e
oT oo, 200, 20¢p, 20¢p, 0@, O0p, O, || 0w
T /o, |= 101, 10ly 10l 0l dlyy  Oly || @@y (7.15)
o Jo, 209, 20¢p, 20¢p, Op, O@, O, ||
la|77 lalsx la|99 Oy Ol Ol || @09
1209, 20¢p, 20¢p, 0p, 0@, 0@, || ww,

: : e : 89 8 .89 89
Inertial coefficients depends on transmission ratios (U;;,Us,,Uy,U-)

(uj,ul,ul,ur) and (uj,uls,uy,u’s) which also depends on input angles ¢7, @s and

(9. Partial derivation of internal coefficients can be introduced in matrix form as follows

A=Bxu
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B 89 89 89 89 ]
Oy Oy Uy 0 0 0 0 0 0 0
op,  O¢p,  Op,  Op,

89 89 89 89
Oy HUy Oy Uy 0 0 0 0 0 0 0
a(Ps 8(08 a(/’s 6(08
89 89 89 89
Oy Uy Oy Uy 0 0 0 0 0 0 0
0 Dy a% 6@9 6(1)9
79 79 79 79
0 0 0 0 Qs My Wy U 0 0 0
o9, o, op,  Op,
79 79 79 79
0 0 0 0 % My Wy U 0 0 0
5(08 a% a(/’s a%
79 79 79 79
0 0 0 0 Qs My Wy U 0 0 0
0, 6(09 a% 6(/’9
78 78 78 78
0 0 0 0 0 0 0 0 Mo Uy Uy 0y
op,  Op,  Op,  Op,
78 78 78 78
0 0 0 0 0 0 0 0 Mo Uy Uy 0y
a% a(”g a(/’s 0 [
78 78 78 78
0 0 0 0 0 0 0 0 Mo 0, Uy O
0 (2% 6@9 6@9 a%
oujp  duy  duy  dug  duy  duy o duy ouy 0 0 0 0
op,  Jp,  Op,  Og, o, op,  Op,  Og,
oujy  duy  duy  dug  duy  duy  duy ouy 0 0 0 0
a% 6@8 a(”g 6@8 5% a(/’s a(”g a(”s
ouj  duy  duy  dug  duy  duy o duy ouy 0 0 0 0
0P, 5(09 0P, 8(09 0 Dy a% 6(/’9 0,
duy  ouy  duy  oug 0 0 0 0 ouy oul o oul  duy
op,  Op,  Op,  Og, op,  Op,  Op,  Op,
ouy  ouyy  duy  oug 0 0 0 0 ouy oul o oul o duy
a% 6@8 a(”g 6@8 6(08 a% a(”g a%
ouy  ouy  duy  oug 0 0 0 0 ouy oul o oul  duy
0P, 8(09 0P, 8(09 0, 0p, 0p, 6(/79
0 0 0 0 duly  oulg  dug  duy  duf  duy  dul  Oug
o, op, Op,  Op, Op, Op, Op, O,
0 0 0 0 auly  oulg  dug  duy  duf  duy  dul  Oug
0 D a(/’s a(”g 5(08 6(08 0 D5 a(”g a%
0 0 0 0 duy  duy  duy  dug  duf  duy  duyp  dug
op, o, 0, 0, 0, 0, 0, 0, J
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01, /09,
ol,,/0g,
ol;,/0g,
Ol /0p,
Olys /O,
Ol /O,
Olyy /00,
Olyy /00,
Olyy 09,
0l /09,
0l /00,
0l /09,
0l /09,
0l /00,
0l4/00,
Oly, /09,
Oly, /00,

|0l /09, |

Ilu17
U3
s
Ui
lujs
Uz
Uy
Uz
ug
U5
lus,

78

89 ]

huw_

(7.16)

Derivative expression of kinetic energy (7.19) for input velocities @7, mg and wg

yields;

Time derivative of equation (7.17) gives;

d ot |
dt dw,
d oT
dt Oy
d oT
_E 0w, |

7 |78
8 |88
9 |89

~
>3

N
Rl

I79 CU7

|89 a)8

|99 0)9

—d|77 d|78 d|79—
dt  dt dt
dl, di, di,
dt  dt dt
d|79 d|89 d|99

dt dt dt |

(7.17)

(7.18)
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Derivation of inertia coefficients (7.14)

angles @7, @g and o) gives;

(inertia coefficients are function of input

dl., ol,, o, oadl, 0 0 0
at op, Op; 09,
dl,, Olgg  Olgg  Olgg 00 ol
dt op, Op; 09, @,
dly, Olyy  Olgy Ol 00 oll%
dl, ol,g, ol ol 00 0 0
dt op, Opy 0y, 0
diy | o, o, al, 0 0 ollO0]
d‘:t dp, Op, Og,
d:g a|89 a|89 a|89 0 0 0
- © [ O0¢, Opy O, i

Using equations (7.9), (7.15), (7.18) and (7.19), we can get Lagrange motion

equation for mechanical system with three degrees of freedom in the following form,;

ol ol ol ol ol
M, =16 + 16 + 18 +l 7 72 +(—78—l—88ja)82 +( Lk —1—99]6092
P Opy 2 0g, op, 20,
ol ol ol ol ol
+—L w0, +— 0,0, +[ By 25 Ja)ga)g (7.20)
e 9 op, Op, Op,
M., = o8 + L& + &, +(%—l%jaﬁ +l%a)82 +[a|89 L al”jwf + s w0
op, 2 0p; 2 Op op, 2 0p; o9,
o o Do Oy @, +%w8w9 (7.21)
a@) 6¢7 a¢8 9
Mg, = los, + L& + 1o&, +(6|79 _lallja)f J{ali—l%Jw; +lalia)92
op, 209, dp, 2 0g, 2 g,
J{&lgg+8|79_5|78Jw7a)9+%w7w9+%w8% (722)
8¢7 a¢8 a¢9 7 3

64



Equation (7.20), (7.21) and (7.22) describe equations of motion for the left side
of LBS rover suspension system. By applying same procedure to the other side of the
rover, we get six Lagrange motion equations for a mobile robot suspension mechanism

with six degrees of freedom.
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Chapter 8

COMPUTER SIMULATION

8.1 Rover Drive on Test Course

Computer modelling and simulation is powerful tool for designers. Although the
suspension mechanism calculated by mathematically and geometrically, visual test with
modern computer programs is another important phase of a suspension research.

Main performance criteria of a rover suspension is its force distribution on the
ground. To measure the approximate behaviour of linear bogie, a computer model has
been constructed and assembled. On different test courses, experimental LBS rover
driven and measured its reaction forces and positions. During planar motion tests, only

one side of the mechanism simulated to decrease the solution period.

Figure 8-1: Rover computer model for simulation

8.1.1 Hill Climbing

First test course is a convex shaped hollow. Maximum depth of course is
approximately 500 millimeters. Total travelling time is 2 seconds. Actuators are rotating
at constant velocity of 2r rad/sec during simulation. The rover’s weight is assumed as

200 kgs.
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Figure 8-2: Test course

Reaction forces at front, middle and rear wheel, which is an indicator of traction

force on rough terrain, is given below.

500
450 -
400 -
350 )
300 |
250 -
200 -
150 -
100 1
50 -

0 T T T
0 0.5 1 15 2

Time (s)

Force (N)

Figure 8-3: Wheel reaction forces on test course
It can be seen on figure 8-3; reaction forces have close values to each other.

Small waves are result of rough terrain where wheels softly bounce while passing over

obstacles. Constant wheel velocities are also another cause of these small deviations.
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Figure 8-4: Course with small hill

8.1.2 Step Climbing

Another challenging terrain type for mobile robots is step climbing. For indoor
usage, stairs are the most significant obstacles. This vertical motion also needs high

surface friction coefficient between wheel and ground.

Figure 8-5: Step climbing performance of LBS

In computer simulations, LBS has climbed approximately 1.5 wheel diameter of
step obstacle. Linear motion has a natural advantage during vertical climbing. During
this motion, reaction force, which acts from obstacle to trajectory, is perpendicular to
trajectory of the wheel. By the advantage of this motion dangerous moment on bogie

prevented with mechanism.
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8.2 Evaluation of Test Results

After different field and obstacle simulations, LBS design demonstrates a similar
obstacle capacity with rocker-bogie suspension. Advantage of the linear suspension is
its more reliable structure with linear motion. This feature also can be a transition from
quasi-static operation to fast-speed operation of planetary rovers.

Since climbing operations need high surface friction, a vehicle which can climb
an obstacle more than 2 wheel diameters should have an active climbing system.
Passive suspension mechanisms capacity limit depends on wheel diameter where the

limit narrowed by overall size of the robot.
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Chapter 9

CONCLUSION

In this thesis study, rover suspension mechanisms have been discussed. Linear
motion mechanism of Chebyshev has been improved and applied for a Mars rover
suspension mechanism. Results of the simulations and position analysis show that linear
motion bogie has good performance during field operations. On the other hand,
different designs should be discussed to improve the capacity of suspension.

This research also shows that it is possible to construct useful mechanisms by
arranging classical four-bar mechanisms. These design possibilities can be discussed
with new structural synthesis formula, which has been introduced and applied on rover
suspension design.

Future studies may continue to discuss dynamic behaviour of the suspension
mechanism. Anyone can see that planetary exploration will be the future robotics topic
with unusual mobility and high stamina robots.

The purpose of this study is to put another stone on the pyramid of scientific
knowledge. Although the art of mechanism design seems like it has lost its popularity
due to the powerful control algorithms, there is no doubt that future robotics study will

continue to search for new mechanisms.
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Appendix A

DIMENSIONS OF SUSPENSION MECHANISM AND
ROVER

1185

670

Figure A1.2: General dimensions of the rover (Side View)

Note: All dimensions are given in milimeters
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Appendix B

CONSTRAINT FUNCTION SOLUTION

In solution of four-bar mechanisms,
A(O)cosy + B(@)siny =C(0)
We can solve this equation by two methods.

Fro trigonometric solution we divide both sides by v/ A* + B> . That yields;

C0SO = and sind =

A B
\JA? + B? A + B?

If we divide and arrange these two equations;

0= arctan( %)

If we put this term into (A 2.1)
COS OCOSY + SiNd siny = cos(y — J)

This equation also another cosine of angle. Let we call this angle 7 ;

COS7T =

C
\JA? + B?

(A 2.1)

(A2.2)

(A 2.3)

(A 2.4)

(A 2.5)

Because of cosine function has negative and positive term, 6+t and 5-t are solutions.

w=0%r

(A 2.6)

A2



B C
v = arctan (—) tarccos (—J
A VA? +B?

The solution exists only if —1<cos7<1. So that A*>+B*-C >0

(A 2.7)

The second solution method is tan-half-angle technique. In equation (A 2.1) we

can transform sine cosine terms with;

Y

coS Sl sin —2—u ‘[anZ =u
AT d 1+u®’ 2

If we put and arrange them, we can find

(C—A)> +2Bu+(C+A) =0

That gives;

_ —B+.B*—(C*-A?)

u=
C-A

and if we put this term into (A 2.8) we get,

C-A

szmnl(Bi\/Bz (CzAZ)J

(A 2.8)

(A 2.9)

(A 2.10)

(A2.11)
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Appendix C

POSITION ANALYSIS WITH MICROSOFT OFFICE

EXCEL

Microsoft Excel® is a spreadsheet program with number of cells. Cells consist of

columns and rows, which can be adapted into two-dimensional components. It is very

easy to solve a mechanism if we derive the coupler curve function mathematically.

BT Microsoft Excel - Kinematics

@_‘] Eile Edit ‘iew [Insett Format Tools Data  ‘Window Help  Adobe PDF Type aguestion for help =12 & X
N SHROSRIVEILDBR-F 008 3-8 E] GG -
i e Tur el R g A-BTEER

Al -

A B E F G H ] | L [ wm [ N T |
1 102
B 200
13 ] 189
| 4 |
| 5 |Theta Theta (Rad) Alpha (Rad) Alpha (Deg) x ¥
6| © 0 004604855 -2.63B307548 290576 -167.413
| 7| 5/ 0.0B726646 00030BB738 017562576 291.4129) A77.272 | apg
| 8| 10 0.17453283 0052725521 3.020849501 2921001 -166.847
| 8 | 15 026179939 0102669535 65.06253104 2926077 -186.216
| 10| 20 034906505 015267551 B.747662374) 2029206 -145.447 {"\\
| 11| 25 043633231 0202538511 11.60465914 293036 -134.602 | 200
| 12| 30 052359878 0.252074709 14.44251694 292962 123.735
(13| 35 0.61086524 0301108291 17.25223422 2927158 -112.855
(14| 40 D.B981317 0348479269 20.02365716 292.3216)  -1021
| 15| 45 0.78539816 0.397037054) 2274554743 291.8097 -91.39% | 100
| 16| 50| 0.87266463 0443540633 2541873591 291.2141| -B0.8066
| 17| 55 095993109 0489158278 28.02670453 2905716 -70.3344
[ 18| BO| 1.04719755 0533467647 30.56544469 239.9196  -50.9879
[19] BS| 1.13446401 0576456217 33.02850828 289.7944 -49.765 g : y y ;
|20 70 1.22173048 0616021908 3541004697 288.7303) -39.6569 100 200 og 0g 200
|21 | 75| 1.30899684 0B5BO73624| 3770485273 288.2574 -20.6483
|22| B0 13962634 DE9B532972 39.90839961 267.8008 19.7182 | .4
| 23| 85 1.48352986 0733332865 42.01667817 2676791 -0.84543
(24| 90 1.57079533 0760419901 44.02721721 2076039 0
|25| 95 165006279 0.601753436 45.93700007 2076791 9.045425
| 26| 100 174532025 05633305494 47.74485757 257.5008 19.71921 | _opp
|27 | 105 1.53259571 0.663060052 4944970017 2552574 29.64529 {'/
| 25| 1100 191986218 0.591012104) 51.05123308 255.7303 39.65686
20| 115 2.00712864 091718592 5254573635 289.2944| 49.76505
130| 1200 20943951 0941533582 53.94500052 289.9196 59.98789 | -300
131 ] 125 218166156 0954132822 55.24074162 2905716 70.33436
32| 130 2.26892803 0954984855 5643547509 291.2141| 5080864
133 | 135 235619443 1.004112047 57.53136247 291.8097 91.39961 v
W < » W]y Position Analysis ¢ Angular Relations / |< B
Ready UM

Figure A3.1: Screenshot of Microsoft Excel

The trajectory of the mechanism can be drawn according to one input angle.

Other angles were calculated in another sheet from trigonometric relations.
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Appendix D

KINEMATIC ANALYSIS WITH VISUAL NASTRAN 4D

MSC Visual Nastran 4D is a kinematic and dynamic simulation program.
Mechanism parts are usually modeled with different CAD programs can be easily
imported to Visual Nastran. After this procedure, kinematic relations between each

body are defined in 3D environment.

= MSC.visualNastran Desktop - terraind.wm3

File Edit Wiew Insert World Object Tools Window Help
[DE@ iBE«n [[@aaCe Bom(#SRINEEDIE0]0 & &lla oD
POH | |[$@aH +68—
@ RightMiddle -
@ constraint[228]
- ® constraint[233]
® constraint[234]
@ RightRear
i ok coord[243] on side-1
gk coord[239] on body[1
- ® constraint[238]
® constraint[240]
@ constraint{241]
b @ LeftMiddle
- @ LeftFront
+- @ constraint{252]
constraint[ 260]
constraink{263]

Ll 3 terraind.wm3

-5 -6

BB

- ® constraint{267]
- B constraint{242]
[+ B constraint[264]

. |
constraint{271] ~
- | @
R =~ &

Connections ko body[268] |

D body[ze8]
GObady[19] y
@obody[22] E
gg:ﬂ:ﬁiggi (PG (§) Frear (N) Fmiccle () vs. time (s)
Sobod:{192] vl * T : /\/—__—r_—_&ﬂﬁ
Properties 300 E—— - il = i T L
200 I | I -
100
o
Ely : |
0o 01 02 03 04 a5 s e
[, ¥) = (01228, 248)

(=] [ [E [ [] [ ——— 1] 1 | Fon=[ @ Tme[ oo s

[ |Last computed mation frame=3+ [

Figure A4.1: Visual Nastran screenshot

Once the model has been constructed, various scenarios can be defined and

tested with different files.
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