
Rev. 7599C–AVR–07/08

8-bit
Microcontrollers

Application Note
AVR328: USB Generic HID Implementation

Features
• Supported by all Microsoft® O/S from Windows® 98SE and later
• Simple PC Interface with Read/Write Functions
• Up to 64Kbytes/s Full Duplex Transfer
• Runs on any AVR® USB microcontroller

1. Introduction
The aim of this document is to describe how to start and implement a USB application
based on the HID class to transfer data between a PC and user equipment.

2. Description
The USB interface becomes very complex when the user data does not fit with USB
standard classes (Mass Storage, Audio, Video...). Specific drivers must be developed,
requiring a significant amount of development time.

Atmel has developed a solution to save time and development efforts. This solution is
based on HID class. It ensures a full duplex transfer between the device and the PC
(up to 64Kbytes/s). Adding to the data exchange, this application allows the user to
upgrade firmware without any hardware setup.

The HID class is supported by all Microsoft O/S from Windows 98SE and later. It is
also supported by most other O/S running on PCs (at time of publication).

A familiarity with the USB Software Library for AT90USBxxx Microcontrollers (Doc
7675, Included in the USB CD-ROM & Atmel website) and the HID specification
(http://www.usb.org/developers/hidpage) is assumed.

USB interface

3. Hardware Requirements
The generic HID application requires the following hardware:

1. AVR USB evaluation board (STK525, AT90USBKey, STK526...or your own board)

2. AVR USB microcontroller

3. USB cable (Standard A to Mini B)

4. PC running on Windows (98SE, ME, 2000, XP) with USB 1.1 or 2.0 host

4. In system programming and Device firmware Upgrade
To program the device you can use the following methods:

• The JTAG interface using the JTAGICE MKII

• The SPI interface using the AVRISP MKII

• The USB interface thanks to the factory DFU bootloader and Flip software

• The parallel programming using the STK500 or STK600

Please refer to the hardware user guide of the board you are using (if you are using Atmel starter
kit) to see how to program the device using these different methods.

Please refer to Flip(1) help content to see how to install the USB driver and program the device
through the USB interface.

Note: 1. Flip is a software provided by Atmel to allow the user to program the AVR USB devices
through the USB interface (No external hardware required) thanks to the factory DFU
bootloader.
2
7599C–AVR–07/08

AVR328

AVR328
5. Quick Start
Once your device is programmed with generic hid hex file, you can start the generic HID demo.
Check that your device is enumerated as HID device (see Figure 5-1.), then launch the PC appli-
cation (see Figure 5-2.) and start exchanging data between the PC and embedded application.

Figure 5-1. HID Enumeration

The aim of this demonstration is to demonstrate how to build a full duplex communication
between a USB device and a USB host.

The IN communication consists of sending data from the device to the host. These data are sent
when you move the joystick of the starter kit. The PC application (see figure below) will allow you
to send data to the device to switch ON/OFF the LEDs of your starter kit.

Figure 5-2 shows the GUI used by the PC application:
3
7599C–AVR–07/08

Figure 5-2. GUI generic HID

Please refer to the Application note USB PC Drivers Based on Generic HID Class for further
information regarding the PC application.

6. Application Overview
The generic HID application is a simple data exchange between a PC and the device.

The USB data exchange for this application is based on two interrupt endpoints (one IN and one
OUT).

The PC asks the device if there is new data available each P time (polling interval time), the
device will send data if it is available, otherwise it will send a NAK (No Acknowledge) to tell the
PC that there is no data available. The data package sent from the device to the PC is called
report IN.

To send data to the device, the PC checks if there is new data available for the application each
P time (polling interval time). Once data is available, the PC sends it to the device. This data
package is called report OUT.

These reports conatin a set of bytes which can be used by the user application to transfer data -
depending on the requirement.

This demo is using the report IN and the report OUT with the structures below:
4
7599C–AVR–07/08

AVR328

AVR328
Figure 6-1. Report IN structure

• LEDs value: This byte contains the current state (ON/OFF) of the LEDs.

• Joystick value: This byte contains the joystick state (Active/Inactive) and the direction of the
pointer.

• Potentiometer value: This byte contains the potentiometer value.

• Temperature value: This byte contains the temperature sensor value.

Figure 6-2. Report OUT structure

LEDs value: This byte contains the new state of the LEDs.

Note: In this application we use 8 bytes for the report IN/OUT size. This size can be changed by the
user. There is no maximum value of the report size, but a maximum of 64 bytes can be sent at one
time (see Section "Firmware", page 7).

The Generic HID device allows the user to send data through the endpoint 0 using the ‘setFea-
ture’ function. This function sends a feature report with 4 bytes (the lenght can be modified by
the user, refer to the section 7.3):

Figure 6-3. Feature Report

Joystick
value

Potentiometer
value

Temperature
value

Byte 0Byte 1Byte 3 Byte 2

LEDs
value

Bytes 4 to 7

Reserved

Byte 0

LEDs
value

Bytes 1 to 7

Reserved

Byte 0Byte 1Byte 3 Byte 2
5
7599C–AVR–07/08

Figure 6-4. Application Overview

DLL: AtUsbHidDll

USB API Classes

Host USB Drivers

Open Device
Com

ReadData WriteData
Close Device

Com

USER APPLICATION USER APPLICATION

USB API

USB Enumeration

Device USB Drivers

WriteData

USB Bus

PC Side Device Side

Report IN

Report OUT

DFU
Class

ReadData StartBootloader
6
7599C–AVR–07/08

AVR328

AVR328
7. Firmware
As explained in the USB Software Library for AT90USBxxx Microcontrollers document (Doc
7675, included in the USB CD-ROM) all USB firmware packages are based on the same archi-
tecture (please refer to this document for more details).

Figure 7-1. Generic HID Firmware Architecture

This section is dedicated to the HID module only. The customization of the files described here-
after allow the user to build his own Generic HID Application:

• hid_task.c

• usb_descriptor.h

main.c

scheduler.c

usb_task.c

usb_standard_
request.c

usb_specific_
request.c

conf_scheduler.h

hid_task.h

usb_descriptors.c

usb_drv.c

config.h

usb_standard_request.h usb_specific_request.h
usb_descriptors.h
conf_usb.h

Should not be modified by user Can be modified by user Added by user

H
ID

 a
p

p
lic

at
io

n
A

P
I

D
ri

ve
rs

usb_drv.h

H
ar

d
w

ar
e

USB hardware interface

Enumeration
management

HID application
management

usb_task.h

S
ta

rt
 u

p

stk_525.c

stk_525.h

hid_task.c
7
7599C–AVR–07/08

7.1 hid_task.c
This file contains the functions to initialize the device, manage the data transfer with the PC, and
start the bootloader when the user wants to upgrade his firmware.

Figure 7-2. Generic HID Application

7.1.1 hid_task_init
This function performs the initialization of the device parameters and hardware resources (joy-
stick, potentiometer...).

7.1.2 (*start_bootloader)
This function pointer allows the launch of the bootloader.

7.1.3 hid_task
This function manages the data transfer, and the launch of the bootloader, once the DFU com-
mand is sent by the PC.

7.2 stk_52x.c.
This file contains all the routines to manage the STK52x board resources (Joystick, potentiome-
ter, Temperature sensor, LEDs...). The user should not modify this file when using the STK52x
board. Otherwise he has to build his own hadware management file.

7.3 Report Length Modification
As mentioned in Application Overview section, the user can modify the report IN/OUT length.

The report IN and report OUT lengths are defined in the file usb_descriptor.h:

#define LENGTH_OF_REPORT_IN 8

#define LENGTH_OF_REPORT_OUT 8
8
7599C–AVR–07/08

AVR328

AVR328
Please note that the report length should be equal or less than the endpoint size. If the report is
bigger than the endpoint size you must send the report in several times.

To modify the endpoint size (maximum 64 bytes, since the HID class is using the interrupt trans-
fer), you must modify the following parameters from the file usb_descriptors.c:

#define EP_IN_LENGTH 8

#define EP_OUT_LENGTH 8

And the SIZE_n parameters from the file usb_specific_request.c, and more specifically from the
function usb_user_endpoint_init():

usb_configure_endpoint(EP_HID_IN, \

 TYPE_INTERRUPT, \

 DIRECTION_IN, \

 SIZE_8, \

 ONE_BANK, \

 NYET_ENABLED);

usb_configure_endpoint(EP_HID_OUT, \

 TYPE_INTERRUPT, \

 DIRECTION_OUT, \

 SIZE_8, \

 ONE_BANK, \

 NYET_ENABLED);

The SIZE_n can have the following values:

SIZE_8: 8 bytes

SIZE_16: 16 bytes

SIZE_32: 32

SIZE_64: 64 bytes

SIZE_128: 128 bytes

SIZE_256: 256 bytes

SIZE_512: 512 bytes

SIZE_1024: 1024 bytes

To modify the feature report, you must modify the following parameter from file usb_descriptor.h:

#define LENGTH_OF_REPORT_FEATURE 4

Like the report IN/OUT, this report ha no limit length. If its length is equal or less than the end-
point 0 size, it will be sent in one time, unless you must send it in several times. You may need to
modify the endpoint zero length to send a bigger report. to do so, you must modify the following
parameter from the usb_descriptors.h:

#define EP_CONTROL_LENGTH 8

The maximum size could be set to the endpoint 0 is 64 bytes (USB specification).

7.4 How to Handle the setFeature Request
The setFeature() function is provided by the DLL to allow the user to send a control command to
the device. These commands are sent through the endpoint 0 and have to be treated as a
set_report request (refer to the HID specification for further information).

The set_report request has to be managed by the firmawre as a control transfer.

First the host will send the set_report as shown below:
9
7599C–AVR–07/08

bmRequestType 00100001

bRequest SET_REPORT (0x09)

wValue Report Type (0x03) and Report ID 0x00)

wIndex Interface (0x00)

wLength Report Length (0x0004)

Data Report (4 bytes)

This request is speci f ic to the HID c lass, th is is why i t is not managed by the
usb_standard_request.c file but with the usb_specific_request.c. In this file the request is
decoded fo l l ow ing the va lue o f t he bmReques t and the bReques t us ing the
usb_user_ read_reques t () f unc t ion . The repo r t t ype (0x03) co r responds to a
Set_Feature_Report. To handle this request the usb_user_read_request() will call the
usb_set_feature() function. This function will acknowledge the setup request and than allow you
to get the sent data (you can check the size using the wLength parameter).

void usb_set_feature(void)

{U16 wInterface;

U16 wLength;

U8 tab[];

LSB(wInterface)=Usb_read_byte();

 MSB(wInterface)=Usb_read_byte();

LSB(wlength)=Usb_read_byte();

 MSB(wLength)=Usb_read_byte();

Usb_ack_receive_setup(); //Clear the setup flag

while(!Is_usb_receive_out()); //Wait data stage

for(i=0;i<wLength;i++)

tab[i] = Usb_read_byte() //Read data sent by the host using setFeaure

Usb_ack_receive_out();

Usb_send_control_in(); //send a ZLP zero length packet to ack the setup

while(!Is_usb_in_ready());

}

Note: The setFeature is used to send a request from the PC to the device to jump to the bootloader.

7.5 How to modify the polling interval of each endpoint
Since the HID Generic is using the interrupt transfer for both endpoints, each endpoint should
have its own polling inteval (specified in the enpoint descriptor).

To modify this parameter to fit with the requirment of your application, you must modify the fol-
lowing values from the usb_descriptors.c:

// USB Endpoint 1 descriptor FS

#define ENDPOINT_NB_1 (EP_HID_IN | 0x80)

#define EP_ATTRIBUTES_1 0x03 // BULK = 0x02, INTERUPT = 0x03

#define EP_IN_LENGTH 8

#define EP_SIZE_1 EP_IN_LENGTH

#define EP_INTERVAL_1 20 //interrupt pooling from host

// USB Endpoint 1 descriptor FS

#define ENDPOINT_NB_2 (EP_HID_OUT)
10
7599C–AVR–07/08

AVR328

AVR328
#define EP_ATTRIBUTES_2 0x03 // BULK = 0x02, INTERUPT = 0x03

#define EP_OUT_LENGTH 8

#define EP_SIZE_2 EP_OUT_LENGTH

#define EP_INTERVAL_2 20 //interrupt pooling from host

The allowed valued should be between 1 and 255 and the unity is ms.

8. PC Software
As shown in the Figure 6-4, the Generic HID application requires a software package. This pack-
age contains a DLL (Dynamic Link Library) and a user application.

The DLL allows the user to interface with the host USB drivers and avoids heavy development.
This DLL contains five functions explained below:

Figure 8-1. HID DLL

8.0.1 findHidDevice
This function returns true and creates the handle if the right device is found (the VID & PID are
correct). Otherwise, it returns false.

Parameters: VID: The vendor ID of the device

PID: The Product ID of the device.

8.0.2 readData
This function ensures the reading of data sent by the device and saves it on the buffer.

Parameters:*buffer: Pointer of the buffer on which data will be saved.

8.0.3 writeData
This function ensures the sending of data from the PC to the device. It also ensures the sending
of the DFU command.

Parameters:*buffer: Pointer of data buffer.

DLL: AtUsbHidDll

findHidDevice
(Vid, Pid)

readData
(*buffer)

writeData
(*buffer)

closeHandles()

USER APPLICATION

setFeature
(*buffer)
11
7599C–AVR–07/08

8.0.4 setFeature
This function allows the user to send a control data to the device through the endpoint 0.

Parameters:*buffer: Pointer of data buffer

8.0.5 closeHandles
This function closes all the handles and the threads. It should be called when you close the
application.

Parameters : none.

Please refer to the application note USB PC Drivers Based on Generic HID Class for further
information regarding the USB HID DLL.

9. Related Documents
AVR USB Datasheet (doc 7593)

USB Software Library for AT90USBxxx Microcontrollers (doc 7675)

USB HID class specification.
12
7599C–AVR–07/08

AVR328

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
7599C–AVR–07/08

	Features
	1. Introduction
	2. Description
	3. Hardware Requirements
	4. In system programming and Device firmware Upgrade
	5. Quick Start
	6. Application Overview
	7. Firmware
	7.1 hid_task.c
	7.1.1 hid_task_init
	7.1.2 (*start_bootloader)
	7.1.3 hid_task

	7.2 stk_52x.c.
	7.3 Report Length Modification
	7.4 How to Handle the setFeature Request
	7.5 How to modify the polling interval of each endpoint

	8. PC Software
	8.0.1 findHidDevice
	8.0.2 readData
	8.0.3 writeData
	8.0.4 setFeature
	8.0.5 closeHandles

	9. Related Documents

