VB (Serial Comms)

26.1 Introduction

This chapter discusses how Visual Basic can be used to access serial communication
functions. Windows hides much of the complexity of serial communications and auto-
matically puts any received characters in a receive buffer and characters sent into a
transmission buffer. The receive buffer can be read by the program whenever it has time
and the transmit buffer is emptied when it is free to send characters.

26.2 Communications control

Visual Basic allows many additional components to be added to the toolbox. The Micro-
soft Comm component is used to add a serial communication facility.

Thisis added to the toolbox with: Proj ect ® Conponents (Ctrl-T)

orinVisua Basic 4 with: Tool s ® Custom Control s (Ctrl-T)

Notice that both are selected by using the Ctrl-T keystroke. Figure 26.1 shows how a
component is added in Visual Basic 4 and shows how it is added in Visual Basic 5. This

then adds a Comms Component | 3 | into the toolbox, as shown in Figure 26.2.

conirch | Canigrmra | trasskaie Stgucts |

o comae & R [~
Pl Adtives Plugn
fiaiati n Conhok: it Celenclr Control 4.0
'

Il e e badd Bostor Caordral - Carced 1 Moot e o [isioe] ©Conbra 15,0
Em’?ﬁ:‘?#““’ Wicromoft Daks Baund Grid Carirdl
T hdarSreima 1 41 Contiod Hicrum.. Wit Dats Bound Lest Controk 5.0
0ot e g Cortrdd Vil Forrs 2.0 Cbjett Lirary
ClkbcacHlp Fag State Conbol Micronoft Grid Cordral
I hcicack Actiel Flgin Wicroadt Tbesmest Conkroks
CIhSicicock Calarclar Conbicl ED s bt g el bl

Vicen [orwmon Disaqlari 5 1 Q Wil Masheed B Sk B

kzacack [uala e Gid Coried ~Show Wicronft Multinsd s Contrd 5.0

Iicscaok Cuala Bound Lisk Conak 10 e MRt Cuthng Contcd =

Whcicack Farez 211 Dbinct Limary I lnsari T setected s Oy

Kbacecd: B Contl = I Sortck - Micronoft Corm Contrdl 5.0

cack bsmrek -
L8 anlsla I Stected itz Dk Insstion; T WS T ML, D
AINDCW T TE MT
Hicranoft Cowns Corkd 510
Locatiors CMWIHDOWE S TERMEOIWMEE DO |
o | ol | []

Figure 26.1 Adding Microsoft Comm component with Visual Basic 4/5.

332

VB (Serial Comms) 333

General I

Figure 26.2 Toolbox showing Comms components.

In order to use the Comms component the files MSCOMM16.0CX (for a 16-bit module)
or MSCOMM32.0CX (for a 32-bit module) must be present in the
\WINDOWS\SY STEM directory. The class name is MSComm.

The communications control provides the following two ways for handling commu-
nications:

Event-driven. Event-driven communications is the best method of handling serial
communication as it frees the computer to do other things. The event can be defined
as the reception of a character, a change in CD (carrier detect) or a change in RTS
(request to send). The OnComm event can be used to capture these events. and also
to detect communications errors.

Palling. CommEvent properties can be tested to determine if an event or an error has
occurred. For example, the program can loop waiting for a character to be received.
Once it is the character is read from the receive buffer. This method is normally used
when the program has time to poll the communications receiver or that a known re-
sponseisimminent.

Visual Basic uses the standard Windows drivers for the serial communication ports (such
as serialui.dll and serial.vxd). The communication control is added to the application for
each port. The parameters (such as the bit rate, parity, and so on) can be changed by se-
lecting Control Panel ® System ® Device Manager ® Ports (COM and LPT) ® Port
Settings. The settings of the communications port (the IRQ and the port address) can be
changed by selecting Control Panel ® System ® Device Manager ® Ports (COM and
LPT) ® Resources for IRQ and Addresses. Figure 26.3 shows example parameters and
settings.

26.3 Properties

The Comm component is added to a form whenever serial communications are required
(as shown in left-hand side of Figure 26.4). The right-hand side of Figure 26.5 shows its
properties. By default, the first created object is named MSCommd1 (the second is named
MSCommz2, and so on). It can be seen that the main properties of the object are:
CommPort, DTREnable, EOFEnable, Handshaking, InBufferSize, Index, InputLen, In-
putMode, Left, Name, NullDiscard, OutBufferSize, ParityReplace, RThreshold,
RTSEnable, Settings, SThreshold, Tag and Top. The main properties are defined in Ta-
ble 26.1.

334 PC Interfacing, Communications and Windows Programming

Commumcations Pomt [COMT] Priopestiss

Gensid Poil Seting: | L | Hmﬂml

Bespeeiecoed [E00 —— ¥]
nesbiz o =]
Faie ftoee]
gwebef 0 #
e T [T T |

Aeslom Do

Cammasscalinns Pout [C0M 1) Fropsifiss:

Generel | Fot Setings | Driver Ansosces
\;'-, Commurmalgnz Pok [COMT|
Feomuaees ssilngs

FAesmaczbpe | Seling

CFA - 3FF
nlompt A (4

.I|I..|--I=.-.:--.||||' j

* Lls= mdnmatic setngs

Corllcing devca Ist
o canfcds ;J

o | Ced |

[or] cos |

Figure 26.3 Changing port setting and parameters.

. Forml

]
|MSComm1 M5Corm =
[About) =
[Custam]

DTREnable True

EOFEnable Falze

Handshaking 0 - Mo handzhaking

IrB ufferSize 1024

Index

InputLen 0

Inputtdode 0- Text

Left 20

MName MSCaomm1

MullDvizcard Falze

OutB ufferSize 812

ParityR eplace ?

FiThreshold a

RTSEnabls Falze

Settings 9600,n,8.1

SThreshold 0 |
Tag

Too 360)|

Figure 26.4 Communications control and MS Comm Properties.

Table 26.1 The main communications control properties.

Properties Description

CommPort Sets and returns the communications port number.

Input Returns and removes characters from the receive buffer.

Output Writes a string of characters to the transmit buffer.

PortOpen Opens and closes a port, and gets port settings

Settings Sets and returns port parameters, such as bit rate, parity, number of data bits

and so on.

VB (Serial Comms) 335

26.3.1 Settings

The Settings property sets and returns the RS-232 parameters, such as baud rate, parity,
the number of data bit, and the number of stop bits. Its syntax is:

[form]MSComm.Set ti ngs[= setSr$]

where the strStr is a string which contains the RS-232 settings. This string takes the
form:

"BBBB, P, D, S"

where BBBB defines the baud rate, p the parity, D the number of data bits, and s the num-
ber of stop hits.
The following lists the valid baud rates (default is 9600 Baud):

110, 300, 600, 1200, 2400, 9600, 14 400, 19 200, 38400, 56 000, 128 000, 256 000.

The valid parity values are (default is N): E (Even), M (Mark), N (None), O (Odd), S
(Space).

The valid data bit values are (default is 8): 4, 5, 6, 7 or 8.

The valid stop bit values are (default is 1). 1, 1.5 or 2.

An example of setting a control port to 4800 Baud, even parity, 7 data bits and 1 stop bit
is:

Comil. Settings = "4800, E, 7, 1"

26.3.2 CommPort

The CommPort property sets and returns the communication port number. Its syntax is:
[form.JMSComm.CommPor t [= portNumber %)

which defines the portNumber from a value between 1 and 99. A value of 68 is returned
if the port does not exist.

26.3.3 PortOpen

The PortOpen property sets and returns the state of the communications port. Its syntax
is:

[form.JMSComm.Por t Open[= { True | False}]

A True setting opens the port, while a False closes the port and clears the receive and
transmit buffers (this automatically happens when an application is closed).

The following example opens communications port number 1 (COM1:) at 4800 Baud
with even parity, 7 data bitsand 1 stop bit:

336 PC Interfacing, Communications and Windows Programming

Comil. Settings = "4800, E, 7, 1"
Conml. ConmPort = 1
Cont. Port Open = True

26.3.4 I nputting data

The three main properties used to read data from the receive buffer are Input, InBuffer-
Count and InBufferSize.

Input
The Input property returns and removes a string of characters from the receive buffer. Its
syntax is:

[form.]JMSComm.I nput

To determine the number of charactersin the buffer the InBufferCount property is tested
(to be covered in the next section). Setting InputLen to O causes the Input property to
read the entire contents of the receive buffer.

Program 26.1 shows an example of how to read data from the receiver buffer.

Program 26.1

' Check for characters in the buffer
I f Coml. | nBuf f er Count Then
' Read data in the buffer
InStr$ = Cont. | nput
End If

InBuffer Size

The InBufferSize property sets and returns the maximum number of characters that can
be received in the receive buffer (by default it is 1024 bytes). Its syntax is:
[form]JMSComm.I nBuf f er Si ze[= numBytes%)

The size of the buffer should be set so that it can store the maximum number of charac-

tersthat will be received before the application program can read them from the buffer.

I nBuffer Count

The InBufferCount property returns the number of charactersin the receive buffer. It can
aso be used to clear the buffer by setting the number of charactersto 0. Its syntax is:
[form.JMSComm.I nBuf f er Count [= count%]

26.3.5 Outputting data

The three main properties used to write data to the transmit buffer are Output, OutBuf-
ferCount and OutBufferSize.

Output

The Output property writes a string of characters to the transmit buffer. Its syntax is:

VB (Serial Comms) 337
[form.]JMSComm.cut put [= outSring$]

Program 26.2 uses the KeyPress event on aform to send the character to the serial port.

| Program 26.2
Private Sub Form KeyPress (KeyAscii As |nteger)
i f (Conl. CQut BufferCount < Conl. QutBufferSize)
Coml. Qut put = Chr $(KeyAscii)
End Sub

OutBuffer Size

The OutBufferSize property sets and returns the number of characters in the transmit
buffer (default size is 512 characters). Its syntax is:

[form.]JMSComm.Qut Buf f er Si ze[= NumBytes%o]

OutBuffer Count

The OutBufferCount property returns the number of characters in the transmit buffer.
The transmit buffer can also be cleared by setting it to 0. Its syntax is:

[form.JMSComm.Qut Buf f er Count [= Q]
26.3.6 Other properties

Other properties are:

Break. Sets or clears the break signal. A True sets the break signal, while a False
clears the break signal. When True character transmission is suspended and a break
level is set on the line. This continues until Break is set to False. Its syntax is:

[form.]MSComm.Br eak[= { True | False}]

CDTimeout. Sets and returns the maximum amount of time that the control waits
for a carried detect (CD) signal, in milliseconds, before atimeout. Its syntax is:

[form.JMSComm.cDTi neout [= milliseconds&]

CTSHolding. Determines whether the CTS line should be detected. CTSis typicaly
used for hardware handshaking. Its syntax is:

[form.JMSComm.CTSHol di ng[={True | False}]

DSRHolding. Determines the DSR line state. DSR is typically used to indicate the
presence of amodem. If isa True then the DSR lineis high, else it is low. Its syntax
is:

[form.]MSComm.bsRHol di ng[= setting]

DSRTimeout. Sets and returns the number of milliseconds to wait for the DSR sig-
nal before an OnComm event occurs. Its syntax is:

338 PC Interfacing, Communications and Windows Programming

[form.JMSComm.DsRTi neout [= milliseconds&]
DTEEnable. Determines whether the DTR signal is enabled. It is typically send
from the computer to the modem to indicate that it is ready to receive data. A True
setting enables the DTR line (output level high). It syntax is:

[form.]JMSComm.DTREnabl e[={True | False}]

RT SEnable. Determines whether the RTS signal is enabled. Normally used to hand-
shake incoming data and is controlled by the computer. Its syntax is:

[form.]MSComm.RTSEnabl e[={True | False}]

NullDiscard. Determines whether null characters are read into the receive buffer. A
True setting does not transfer the characters. Its syntax is:

[form.]MSComm.Nul | Di scard[={True | False}]
SThreshold. Sets and returns the minimum number of characters allowable in the
transmit buffer before the OnComm event. A 0 value disables generating the On-
Comm event for al transmission events, while a value of 1 causes the OnComm
event to be called when the transmit buffer is empty. Its syntax is:

[form.]JMSComm.SThr eshol d[= numChars%]

Handshaking. Sets and returns the handshaking protocol. It can be set to no hand-
shaking, hardware handshaking (using RTS/CTS) or software handshaking
(XON/XOFF). Valid settings are given in Table 26.2. Its syntax is.

[form.JMSComm.Handshaki ng[= protocol %]

CommEvent. Returns the most recent error message. Its syntax is.

[form.]MSComm.ConmEvent

Table 26.2 Settings for handshaking.

Setting Value Description

conmNone 0 No handshaking (Defaullt).

comXOnXcf f 1 XON/XOFF handshaking.

conRTS 2 RTS/CTS handshaking.

COMRTSXONXOF f 3 RTS/CTS and X ON/XOFF handshaking.

When a serial communication event (OnComm) occurs then the event (error or change)
can be determined by testing the CommEvent property. Table 26.3 lists the error values
and Table 26.4 lists the communications events.

VB (Serial Comms) 339

Table 26.3 CommEvent property.

Setting Value Description

conBr eak 1001 Break signal received.

conCTSTO 1002 CTSTimeout. Occurs when transmitting a character and CTS
was low for CTSTimeout milliseconds.

conDSRTO 1003 DSRTimeout. Occurs when transmitting a character and DTR
was low for DTRTimeout milliseconds.

confrane 1004 Framing Error.

conOverrun 1006 Port Overrun. The receive buffer is full and another character
was written into the buffer, overwriting the previously received
character.

conCDTO 1007 CD Timeout. Occurs CD was low for CDTimeout milliseconds,
when transmitting a character.

conRxOver 1008 Receive buffer overflow.

conRxParity 1009 Parity error.

conrxFul | 1010 Transmit buffer full.

Table 26.4 Communications events.

Setting Value Description

conkvSend 1 Character has been sent.

conkEvRecei ve 2 Character has been received.

comkEvCTS 3 Changein CTSline.

conEvDSR 4 Change in DSR line from ahigh to alow.

conevCD 5 Changein CD line.

conEvRi ng 6 Ring detected.

conEvECE 7 EOF character received.

26.4 Events

The Communication control generates an event (OnComm) when the value CommEvent
property changes its value. Figure 26.5 shows the event subroutine and Program 26.3
shows an example event routine which tests the CommEvent property. It also shows the
property window which is shown with aright click on the comms component.

340 PC Interfacing, Communications and Windows Programming

Pl Pioject] - Form1 [Code) |0 %
IMSComm1 LI IOnComm j

Private 3ub M3Comml OnCormm
Select Case HSCEml.CDrtr:nE & Project] - Form [Form] [0 =]
Case comBreak
MsgBox (*Break rec
Case comCDTO
Case comlT3TO
Case comD3RTO
Case comFrame
Case comOverrun LGTIEEENTE] ®

Case comBxiver = i
Case comRxParits —oee |BuFFers I Hardware I

Case comTxFull CammPart: |
Case comEvCD -

Case comEvCTS Settings: ISBUD,n,B,‘I
Case comEvD3ER
Case comEvRing Handshaking: ID-comNone LI

Case comEvReceils
Case comEviend
End Zelect

End 3ub

= o I I oK I Cancel Apply Help

Figure 26.5 OnComm event.

Program 26.3

Private Sub MSComm OnComm ()
Sel ect Case MSCommil. CommEvent
Case conBreak ' A Break was received.
MsgBox(2Br eak received?)
Case conCDTO CD (RLSD) Ti meout.

Case conCTSTO CTS Ti neout .
Case conDSRTO DSR Ti nmeout .
Case confrane Fram ng Error
Case conmOverrun Data Lost.

Case comRxParity Parity Error.
Case conilxFul | Transmt buffer full.
Case conEvCD Change in the CD
Case conEvCTS Change in the CTS.
Case conEvDSR Change in the DSR
Case conEvRi ng Change in the RI.
Case conEvRecei ve
Case conktvSend
End Sel ect
End Sub

Case conRxOver ' Receive buffer overflow

26.5 Example program

Program 26.4 shows a simple transmit/receive program which uses COM1: to transmit
and receive. A loopback connection which connects the transmit line to the receive line
can be used to test the communications port. All the characters that are transmitted
should be automatically received. A sample formis given in Figure 26.6.

W Forml

Receive

VB (Serial Comms) 341

Figure 26.6 Simple serial communications transmit/receive form.

The loading of the form (Form_Load) is called when the program isinitialy run. Thisis
used to set-up the communication parameters (in this case to 9600 Baud, no parity, 8
data bits and 1 stop bit). When the user presses a key on the form the Form_Keypress
event is called. Thisis then used to transmit the entered character and display it to the
Transmit text window (Textl). When a character is received the OnComm event is
called and the MSComm1.CommEvent is set to 2 (comEvReceive) which identifies that
a character has been received. This character is then displayed to the Receive text win-

dow (Text2). Figure 26.7 shows a sample run.

L Program 26.4

Private Sub Form Load()

MsComil. CommPort = 1 ' Use COML.

MSConmil. Settings = "9600, N, 8,1" ' 9600 baud, no parity, 8 data,
' and 1 stop bit.

MSConm. | nput Len = 0 ' Read entire buffer when | nput
' is used

MsCommil. Port Open = True ' Open port

End Sub

Private Sub Form KeyPress(KeyAscii As |nteger)
MSConmil. Qut put = KeyAsci i
Text 1. Text = KeyAsci i

End Sub

Private Sub MSConmil_OnConm)
I f (MSCommil. CormEvent = conEvRecei ve) Then
Text 2. Text = MsSComml. | nput
End | f
End Sub

Private Sub Commandl_C i ck()
End
End Sub

342 PC Interfacing, Communications and Windows Programming

W R5-232 Transmit/Receive

Trarrmit

fred bloggs

Receive

fred bloggs

E it |

I[=] E3

Figure 26.7 Sample run.

26.6 Error messages

Table 26.5 identifies the run-time errors that can occur with the Communications con-

trol.
Table 26.5 Error messages.
Error Message explanation Error Message explanation
number number
8000 Invalid operation on an opened port 8010 Hardware is not available
8001 Timeout value must be greater than zero 8011 Cannot allocate the queues
8002 Invalid port number 8012 Deviceis not open
8003 Property available only at run-time 8013 Device is aready open
8004 Property is read-only at run-time 8014 Could not enable Comm
notification
8005 Port already open 8015 Could not set Comm state
8006 Device identifier isinvalid 8016 Could not set Comm event
mask
8006 Deviceidentifier isinvalid 8018 Operation valid only when
the port is open
8007 Unsupported Baud rate 8019 Device busy
8008 Invalid Byte sizeisinvalid 8020 Error reading Comm device
8009 Error in default parameters

26.7 RS-232 polling

The previous program used interrupt-driven RS-232. It is also possible to use polling to
communicate over RS-232. Program 26.5 uses COM2 to send the message ‘Hello’ and
then waits for areceived string. It determines that there has been a response by continu-
aly testing the number of received characters in the receive buffer (InBufferCount).
When there is more than one character in the input buffer it isread.

VB (Serial Comms) 343

| Program 26.5

Private Sub Form Load()

Dim Str As String ' String to hold input

MsCommil. CormPort = 2 ' Use COWR

MsCommil. Settings = "9600,N,8,1" ' 9600 baud, no parity, 8 data,
' and 1 stop bit

MSCommi. | nput Len = 0 ' Read entire buffer when | nput
' is used

MSCommil. Port Open = True ' Open port

Text 1. Text = "Sendi ng: Hello"

MSConmil. Qut put = "Hel | o" ' Send nessage

Do Wait for response from port

DoEvent s

Loop Until MSConmi. | nBufferCount >= 2

Str = MsSCommd. | nput ' Read input buffer

Text 1. Text = "Received: " + Str

MSCommll. Port Open = False ' C ose serial port.

End Sub

26.8 Exercises

26.8.1

26.8.2

26.8.3

26.8.4

26.8.5

26.8.6

26.8.7

26.8.8

List the properties of the MSComm control and outline their uses.

Write a Visua Basic program that continuously sends the character ‘A’ to the
seria line. If possible, observe the output on an oscilloscope and identify the
bit pattern and the baud rate.

Write a program that continuously sends the characters from ‘A’ to ‘Z’ to the
seria line. If possible, observe the output on an oscilloscope.

Write a Visual Basic program that prompts the user for the main RS-232 pa-
rameters, such as bit rate, parity, and so on. The user should then be able to
transmit and receive with those parameters.

If possible, connect two computers together with a serial link and write a pro-
gram which uses full-duplex communications.

If possible, connect two computers together with a serial link and write a pro-
gram which uses full-duplex communications.

Write a program which tests some of the run-time errors given in Table 26.5.

Investigate the Handshaking property of the MSComm control. Its settings
are:

- comXOnXoff

0 - comNone
2 COMRTSX OnX off

- comRTS

w
1

