
CE 341/441 - Lecture 8 - Fall 2004

data points ( degree

atically (although strictly

on’t know and we can’t

N
th

xo ξ xN< <

N

f

p. 8.1

LECTURE 8

INTERPOLA TION USING CHEBYSHEV R OOTS
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• The error is for the most part controlled by

•  is small in the center of the interval , but 

• For example forN=5, we examine a plot of :

• Our objective is to minimize by minimizing
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Chebyshev Polynomials

• Consider only the interval . (We will generalize to a

• The Chebyshev polynomial is defined as:

on

• Note that the  term restricts the range since  isnot d

• Zeroth  Degree Chebyshev Polynomial:

⇒

• First Degree Chebyshev Polynomial:
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⇒
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• Second Degree Chebyshev Polynomial:

• From the CRC Math Handbook: Double Angle Relation

⇒

• Third Degree Chebyshev Polynomial:

• From the CRC Math Handbook: Multiple Angle Relation
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ree polynomial term equals
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• In general recursive relationship can be developed

• Chebyshev polynomials can be normalized

• We note that for , the coefficient of the highest deg
unity. For example:

T j x( ) 2xTj 1– x( ) T j 2– x( )–=

ψ j x( )
T j x( )

2 j 1–
--------------≡

ψ j x( )

ψ3 x( )
T3 x( )

2
2

-------------- x
3 3

4
---x–= =



CE 341/441 - Lecture 8 - Fall 2004

, therefore:

nomial, .

j x( ) 1≤

1
--- ψ j x( ) 1

2 j 1–
------------≤ ≤

ψN 1+ x( )
p. 8.6

Properties of Chebyshev Polynomials

• Cosine ofany argument will always range between

    ranges between

• The normalized Chebyshev polynomial:

 ranges between

• Let’s examine the roots of the Normalized Chebyshev Poly
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• Since

where then values are selected such that all roots falling wit
defined. Extending the range forn will only lead to repeated ro

• We note that since  are the roots of  we 
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hev polynomial

5

p. 8.8

Example

• Find the Chebyshev roots for the  degree Chebys

• The roots are computed as:
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t equals the third degree

roots defined as the inter-
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3
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• We note that the product of in fac

Chebyshev polynomial, . Thus

• We note that this type of polynomial product term (with the
polating points) appeared in the error formula for Lagrange
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rror function is expressed as:
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Application of Chebyshev Roots as Interpolation Points

•  In general if  are the roots of , then

• For Lagrange interpolation through  data points, the e

• Thus if we select the roots of the degree Chebyshev
lation (or data) points for Lagrange Interpolation (or any
polation scheme with variably spaced data points)

xo
c

x1
c

x2
c …, , , ψN 1+

x( )

ψN 1+ x( ) x xi
c

–( )
i 0=

N

∏=

N 1+

e x( )
x xo–( ) x x1–( ) x x2–( )… x xN–( )

N 1+( )!
------------------------------------------------------------------------------------ f

N 1+( )(=

N 1+
N

ec x( ) 1
N 1+( )!--------------------ψN 1+ x( ) f N 1+( ) ξ( )=



CE 341/441 - Lecture 8 - Fall 2004

oots of the Chebyshev poly-
l is

yshev polynomial) is mini-

over the interval (as far as

al.

n and we can’t do much

x 1≤ ≤
p. 8.11

• Notes:

• This error estimate is only good for the case where the r
nomial are used as interpolation points and the interva

• Since the magnitude of (the normalized Cheb

mized to

we have effectively minimized the maximum error
we can)!

• The distribution of error is now more even on the interv

• We haven’t entirely minimized since depends o
about this.
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Example

• Develop an interpolation formula over the range
minimizes the maximum error over the interval. Estimate t
interval.

• The roots of the Chebyshev polynomial with  are:

, ,

• The Lagrange interpolating function is:

• Note that the functional values  are now evalu
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• Substituting in values for

• Note that for and we are strictly sp
interpolating.

• However since we have carefully placed the points, w
errors in these extrapolated ranges.
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ard difference formula
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• The maximum error over the interval may be estimated as 

, ⇒

, ⇒

• However we noted that

• Thus over the interval
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• Note that  can be estimated using a forward/backw
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 transformation

e. The Chebyshev roots or

z
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Generalization of the Interpolation Interval

• So far we considered

• We can map  to the range of interest  with the

• Use this transformation and substitute for in all formula
interpolation  points (nodes) become:
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